摘要。Saryono,Devi S,Nugroho TT,Fadhila WF,Lorenita L,Nasution FS,Suraya N.2023。淀粉酶产生碳源变化和嗜热真菌曲霉的分子鉴定。LBKURCC304来自印度尼西亚西苏门答腊的Bukik Gadang。 生物多样性24:1200-1205。 淀粉酶是一种用于将淀粉水解成较小分子的酶。 淀粉降解非常困难,因为复杂多糖和酶适应中心的存在1-4个葡萄糖剂键,因此淀粉酶的产生源于行业的需求。 淀粉酶的产生受碳水化合物的强烈影响,碳水化合物充当诱导酶的产生。 进行了这项研究,以确定不同碳水化合物源对嗜热真菌Sp的淀粉酶产生的影响。 lbkurcc304。 使用的不同碳源是木薯,玉米,芋头,紫色的红薯,土豆,面包果,Canna,Gembili,Gadung和Sago。 使用Duncan的多重范围测试(DMNRT)在5%和主成分分析(PCA)的显着水平上,使用Duncan的多重范围测试(DMNRT)对不同碳水化合物生产的影响进行了统计测试。 分子鉴定的结果表明,来自Sago的碳水化合物是比其他碳源更好的碳源,其活性为0.0391±0.0017 U/ml,比活性为0.0874±0.0049 U/mg。 最高(0.7651±0.0096 mg/ml)的蛋白质含量是从CANNA记录的。LBKURCC304来自印度尼西亚西苏门答腊的Bukik Gadang。生物多样性24:1200-1205。淀粉酶是一种用于将淀粉水解成较小分子的酶。淀粉降解非常困难,因为复杂多糖和酶适应中心的存在1-4个葡萄糖剂键,因此淀粉酶的产生源于行业的需求。淀粉酶的产生受碳水化合物的强烈影响,碳水化合物充当诱导酶的产生。进行了这项研究,以确定不同碳水化合物源对嗜热真菌Sp的淀粉酶产生的影响。lbkurcc304。使用的不同碳源是木薯,玉米,芋头,紫色的红薯,土豆,面包果,Canna,Gembili,Gadung和Sago。使用Duncan的多重范围测试(DMNRT)在5%和主成分分析(PCA)的显着水平上,使用Duncan的多重范围测试(DMNRT)对不同碳水化合物生产的影响进行了统计测试。分子鉴定的结果表明,来自Sago的碳水化合物是比其他碳源更好的碳源,其活性为0.0391±0.0017 U/ml,比活性为0.0874±0.0049 U/mg。最高(0.7651±0.0096 mg/ml)的蛋白质含量是从CANNA记录的。分子鉴定表明LBKURCC304分离株是烟曲霉。
(SHRI ARJUN MUNDA)(a) & (b):是的,先生。自 2014 年起,印度农业研究理事会 (ICAR) 旗下的国家农业研究系统已推出 2380 个不同大田作物品种,其中 1971 个品种为谷物(913)、油籽(335)、豆类(364)、饲料作物(106)、纤维作物(189)、甘蔗(54)和潜在(未充分利用)作物(10),这些作物具有气候适应性,可耐受一种或多种生物和/或非生物胁迫。其中,429 个大田作物品种对极端非生物胁迫具有很强的耐受性,包括干旱/水分胁迫(240);涝渍/淹没(72);盐碱/钠土(58);高温(42)和寒冷/霜冻(17)。同期还培育了487个园艺作物品种,包括22个气候抗逆品种:耐高温品种6个(马铃薯和番茄各2个,菠菜和萝卜各1个);耐旱品种12个(木薯4个,椰子3个,芋头2个,大山药、白山药和红薯各1个);马铃薯水分利用效率品种3个,木薯耐盐品种1个。
图 3 使用 CRISPR/Cas 编辑植物基因组的列表图; (1)卷心菜(来源:Wikimedia Commons;知识共享署名 - 相同方式共享 2.05); (2)亚麻荠(来源:Wikimedia Commons;知识共享署名-相同方式共享3.0) (3)黄瓜(来源:Wikimedia Commons;知识共享署名-相同方式共享3.0) (4)茄子(来源:Wikimedia Commons;知识共享署名-相同方式共享3.0) (5)羽衣甘蓝(来源:Wikimedia Commons;知识共享署名-相同方式共享3.0) (6)油菜籽(来源:Wikimedia Commons;知识共享署名-相同方式共享 4.0) (7)番茄(来源:Wikimedia Commons;知识共享署名-相同方式共享2.0) (8)土豆(来源:Wikimedia Commons;Creative Commons Attribution-ShareAlike 4.0) (9)南瓜(来源:Wikimedia Commons;知识共享署名-相同方式共享 4.0) (10)红薯(来源:Wikimedia Commons;Creative Commons Attribution-ShareAlike 4.0)。 CRISPR/Cas9,成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白-9; HDR,同源性定向修复。
o 胡萝卜,切丝 –8-10 盎司包装 o 胡萝卜,2 –16 盎司包装 o 菠菜 –2 大包装 10 盎司 o 春季混合蔬菜 – 大包装 10 盎司 o 甘蓝 –2 束 o 瑞士甜菜 –1 束 o 红辣椒 –4、2 或 1 个 o 墨西哥胡椒 –1 小个 o 黄洋葱 –5-6 个中等 o 红洋葱 – 3 个中等 o 大葱 –2 束 o 大蒜 –4-5 个蒜头或 32 盎司罐装切碎 o 韭菜 –1 个中等 o 芹菜 –2 束 o 球芽甘蓝 –4 个 西兰花 –2 个 o 西兰花沙拉 –1 个,8-10 盎司包装 o 大白菜 –1 个 o 甜菜 – 2 束 –6-8 个中等 o 小樱桃或葡萄番茄 –1 包 o 1 束薄荷、香菜 2 束 o 罗勒和欧芹各 1 束 o 姜根 –1-2 英寸 o 红薯 –4 中等 o 黄薯 –2 中等 o 甜豌豆 –4 盎司 o 花椰菜 –2 个中等 o 卷心菜 –1 个绿色、1 个紫色 o 中国茄子 –1 小 o 蘑菇 –8 盎司 o 防风草 –1 个中等 o 西葫芦和黄南瓜 –1 个
关于 TAAT。粮食商品生产和供应薄弱是造成非洲粮食不安全、需要过度进口粮食以及非洲粮食出口扩张未实现的原因。由国际热带农业研究所 (IITA) 领导的 TAAT 计划正在开拓向非洲农民部署成熟技术的新方法。TAAT 是 IITA 和非洲开发银行 (AfDB) 共同努力的结果;是后者“养活非洲战略”的重要组成部分。目前,TAAT 正在通过围绕 15 个“契约”在 31 个国家开展的 88 项干预措施推进 100 多项精心挑选的技术,这些“契约”代表了实现非洲实现粮食安全和提升其在全球农业贸易中的作用方面的优先事项。其中九项契约涉及鱼类、小型牲畜(包括家禽)、普通豆、大米、小麦、玉米、木薯、红薯、高粱和小米的特定优先价值链。这些契约与国家计划共同设计干预措施,以引进技术和创新,实现农业发展的宏伟目标。在许多情况下,这些目标是通过实施开发银行授予的主权国家贷款项目来实现的,而 TAAT 在这些贷款项目的设计、规划和执行中的作用是这些项目成功和被接受的关键因素。
摘要这项研究确定了在Zamfara州Gusau的Tudun Wada Market中有助于降解地瓜的真菌。从各个市场中收集了36种地瓜样品,以及六个用于致病性测试的其他块茎。使用标准微生物技术来隔离,筛选和识别与变质相关的真菌。的发生百分比和致病性测试,以确定患病率并评估对块茎体重减轻的影响。存储过程中的生理变化,例如软化,干燥,变色和进攻气味。真菌计数范围从2.5±1.0 cfu/ml到4.±1.5 cfu/ml,yan dankali表现出最低的计数,Yan Kayan Koli最高。确定的真菌属包括尼日尔曲霉,曲霉曲霉,杂田Theobromoae,fusarium oxysporium,Rhizopus stolonifer和Penicillium物种。尼日尔曲霉的发生较高,而botryodiplodia theobromoae的出现最少。致病性测试有助于确定真菌在红薯变质中的作用,通过伤害穿透块茎,并在储存条件下繁荣发展。这些微生物的淀粉分解导致甘薯恶化。尽管针对马铃薯疾病的特定管理实践欠发达,但采用健康的种植材料和卫生措施可以减轻通过藤蔓片传播的地瓜中的真菌疾病。
鉴于美洲印第安人是现在构成美利坚合众国的土地的原住民;鉴于美洲印第安人对我们国家做出了重要而独特的贡献,其中最不重要的是他们对现在构成美国的大部分土地的贡献;鉴于美洲印第安人对世界做出了重要贡献,包括史前玉米和红薯的耕种和收获;鉴于美国人民应该记住当今美洲印第安人的祖先对早期欧洲来访者北美所给予的帮助,包括向朝圣者提供的关于生存、狩猎、耕种和施肥本地作物的知识和培训;鉴于美国人民和政府应该记住当今美洲印第安人的祖先对这个国家的开国元勋们的帮助,包括原住民在 1777-1778 年冬天在福吉谷向乔治·华盛顿和他的部队提供的支持;鉴于应该提醒美国人民和政府,言论自由、政府三权分立和政府内部权力平衡等某些概念都存在于各美洲印第安人国家的政治制度中,它们影响了美利坚合众国政府的形成;鉴于参议院和众议院议员认为,本决议所要求的决议和公告可以鼓励开展有利于增强美洲印第安人青年自尊、自豪和自我意识的活动;鉴于克里斯托弗·哥伦布抵达西半球 500 周年即将到来,为美国人民提供了一个考虑和反思我们国家目前与美洲印第安人关系的机会;鉴于十一月是美国印第安人传统的收获季节的结束,通常是庆祝和感恩的时刻:因此,现在
技术创新和环保运动早已密不可分,后者的灵感来自卫星图像,这些图像展示了在太阳系 60 亿公里范围内拍摄的地球照片和图像。在卫星被发射到地球轨道之前,我们对地球的有限概念并不是一个单一的实体,我们当然也没有它在太空中的背景。看着地球的卫星照片让我们意识到,虽然我们似乎在这个巨大的、充满敌意的虚空中孤身一人,但事实上,我们都在一起。现在,从轨道上看地球已经很常见了,但技术设备仍在改变我们对地球的看法,它总是让我们惊叹不已。我们的星球确实是一片仙境,但我们对自己对地球生物圈所做的事情却一无所知,地球生物圈比我们在太阳系中可能看到的任何东西都要复杂得多,而且相互依存性也惊人地强。为了确保地球安全,我们需要实现世界各国政府在 2010 年会议上达成的雄心勃勃的目标,即到 2020 年保护至少 17% 的陆地和 10% 的海洋区域。目前各国政府尚未实现这些目标,分别只保护了 14.7% 和 3.6%。然而,一些行星科学家担心,这些目标可能不是我们维持地球生态系统正常运转所需要的。他们认为,我们必须创造一个人工泡沫来取代这个美丽但受损的自然系统。因此,人类开始涉足生物圈建设领域。也许最令人振奋的实验发生在 1991 年,当时一个由八名机组人员组成的团队进入了位于亚利桑那州沙漠中部的一个名为“生物圈 2 号”(生物圈 1 号当然是地球)的院落。这项为期两年的实验旨在成为一个拥有 3,800 个物种的自给自足的微型地球复制品,但尽管所有八名机组人员都幸存了下来,但这是一次艰难的经历。有人不得不离开基地接受紧急医疗救治。在高碳水平下,红薯比大多数农作物生长得好得多,以至于船员的皮肤因为吃了太多红薯而染上了淡淡的橙色。40% 的物种灭绝了。船员们用“地狱般的”一词来形容泡泡里的生活,因为这里到处都是入侵的蚂蚁和蟑螂,船员们想要保留的物种也消失了。最先消失的物种之一是蜜蜂,建造生物圈的人类并不知道,由于生物圈内没有紫外线,蜜蜂无法看见或导航。总而言之,对于生活在那里的大多数物种来说,实验结果并不理想,这凸显了一个事实,即在微观世界中创造生命面临着许多复杂的挑战,即使在我们自己的星球上也是如此。这个看似非常受控的实验仍然存在生物多样性问题。这种努力的历史为我们提供了宝贵的教训,让我们认识到自己构建生态系统的局限性。我们成功的机会取决于利用现有资源并与自然合作,而不是试图重建它。这并不是说探索可能性和进行诸如生物圈 2 号之类的实验在解决问题时对我们毫无帮助。恰恰相反。探索的礼物之一是它提出了新的挑战,迫使我们迅速而有创意地解决它们。这种技能对快速变化的地球上的生命有着明显的影响。
自 2012 年首次发现一种潜在的基因组编辑工具以来 [1,2],CRISPR/Cas9 系统已成为一种强大而稳健的基因组编辑工具,用于基因功能研究和作物改良。在过去十年中,随着新 Cas 酶的鉴定、现有 Cas9 酶的修饰以及新生物信息学工具的开发,基于 CRISPR/Cas9 的研究发展极为迅速。特别是 Cas 酶的修饰大大提升了 CRISPR/Cas9 基因组编辑的应用潜力 [3]。尽管在基因组编辑中还鉴定和利用了许多其他 Cas 酶,但 CRISPR/Cas9 系统目前指任何 CRISPR/Cas 系统,包括 Cas12 和 Cas13,主要是因为 Cas9 是基因组编辑中第一个也是最常用的 Cas 酶 [4]。目前,CRISPR/Cas9 基因组编辑已广泛应用于许多植物物种,包括模式植物物种和重要的农业作物,如小麦 [5]、棉花 [6] 和大豆 [7],不仅用于基因功能研究,还用于作物改良。为了促进 CRISPR/Cas9 基因组编辑的快速开发和应用,我们编辑了这期“植物基因组编辑”特刊。在短时间内,这个特刊引起了科学界和工业界的广泛关注。最后,经过专家的同行评审,共有 15 篇论文被接受在 International Journal of Molecular Sciences 的这期特刊上发表。在发表的 15 篇论文中,有 3 篇是及时的综述论文。Jansing 等人(2019)回顾了农业中基因组编辑的技术和实践考虑,特别关注了 CRISPR/Cas9 系统进入植物细胞的当前递送方法及其再生方法。他们还讨论了 CRISPR/Cas9 对改良重要农业作物不同性状的适用性[8]。在所有作物中,利用 CRISPR/Cas 基因组编辑技术在水稻上取得了重大进展。在 Fiaz 等人 (2019) 撰写的一篇综述中,他们回顾了 CRISPR/Cas9 在水稻改良,特别是在稻米品质改良方面的现状[9]。提高 CRISPR/Cas9 的靶向效率、降低非靶向效应一直是基因组编辑的主要课题。在过去的五年里,许多效应被添加到这个领域。在这期特刊中,Hajiahmadi 等人 (2019) 回顾了降低 CRISPR/Cas9 非靶向效应的主要策略。他们认为,单向导RNA(sgRNA)与配体依赖性适体酶策略相结合可能是降低植物非靶标突变频率的有效策略[10]。其余12篇研究文章涉及12种不同的植物物种,包括水稻[11]、棉花[12]、小麦[13,14]、油菜[15]、大豆[16]、红薯[17]、豇豆[18]、番茄[19]、马铃薯[19]、菊苣[20]和模式植物拟南芥[21],以及藻类莱茵衣藻[22]。从这里可以清楚地看到,越来越多的研究集中在农业上重要的作物上。这些研究中大多数都采用传统的CRISPR/Cas9技术来敲除单个基因,只有一项研究采用CRISPR/Cas9碱基编辑器创建了无转基因的基因组编辑番茄和马铃薯[19]。在这些研究中,大多数都致力于农业上重要的性状。例如,Wang等人(2019)通过CRISPR/Cas9基因组编辑研究了IbGBSSI和IbSBEII基因在红薯淀粉生物合成中的作用
背景:糖尿病是一种非传染性疾病,患病率增加。通过饮食管理是一个挑战,尤其是由于安全且营养丰富的食物选择。Semar Rice是为解决糖尿病患者提供健康食品替代品的解决方案的开发。目标:这项研究的目的是用紫色的红薯,肉桂和牛奶骨头的组合以模拟米的形式创建创新的食品,作为糖尿病患者的替代食品。方法:这项研究使用了研究和开发方法与实验室测试进行营养分析。该研究是在XYZ University的食品营养和卫生实验室进行的。对10名20-23岁的健康受访者进行了有机摄影测试。测试了三种配方,即A(35:35:30),B(60:20:20)和C(40:30:30)。与白米相比,通过测量受访者的血糖反应来测量受访者的血糖反应来测试血糖指数。结果:实验室测试结果表明,样品含有56.88%的碳水化合物,6.03%的脂肪,12.26%的蛋白质,2.82%的葡萄糖和3.35%的蔗糖。semar大米的一部分为297.4克,血糖指数为82.20,血糖负荷为49.78,尽管结果有所不同,因为一些受访者没有遵循血糖检查程序。有组织的测试显示了香气3,味道和质地3.1和颜色3.5的得分。Semar Rice还符合SNI 6128-2015水分和碳水化合物含量的标准。结论:这项研究的结论表明,与白米相比,Beras Semar的指数血糖低。对10名受访者进行索引血糖测试后,如果受访者的葡萄糖水平在食用Beras Semar后比白米更稳定,则会出现结果。关键词模拟稻,糖尿病,替代食品