摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
1 伯尔尼大学社会与预防医学研究所,3012 伯尔尼,瑞士;eva.pedersen@ispm.unibe.ch (ESLP);maria.mallet@ispm.unibe.ch (MCM);yin.lam@ispm.unibe.ch (YTL);myrofora.goutaki@ispm.unibe.ch (MG) 2 伯尔尼大学健康科学研究生院,3012 伯尔尼,瑞士 3 意大利 Ciliare Primaria Sindrome di Kartagener Onlus 协会,70124 巴里,意大利;saradcp@virgilio.it 4 ADCP 协会,42218 Saint-Étienne,法国;icizeau@cegetel.net 5 PCD Support UK,伦敦 MK18 9DX,英国; fiona.copeland@stonac.co.uk 6 Asociación Española de Pacientes con Discinesia Ciliar Primaria, Santo Ángel 30151, 菲律宾; asociaciondcpes@gmail.com 7 PCD 基金会,明尼阿波利斯,明尼苏达州 55420,美国; michelemanion@gmail.com 8 原发性纤毛运动障碍中心,NIHR 生物医学研究中心,南安普敦大学医院 NHS 基金会信托,南安普敦 SO16 6YD,英国; Amanda-lea.harris@uhs.nhs.uk (ALH); jlucas1@soton.ac.uk (JSL) 9 南安普顿大学医学院,临床和实验医学学院,南安普顿 SO17 1BJ,英国 10 费德里科二世大学转化医学科学系,80138 那不勒斯,意大利; santamar@unina.it 11 伯尔尼大学医院儿科系儿科呼吸医学和过敏学科,伯尔尼大学医院,伯尔尼大学,3010 瑞士 * 通讯地址:Claudia.kuehni@ispm.unibe.ch;电话:+41-31-684-35-07 † COVID-PCD 患者咨询小组(按字母顺序):Sara Bellu,意大利 Kartagener Onlus 原发性纤毛诊断协会,意大利;Isabelle Cizeau,法国 ADCP 协会;Fiona Copeland,英国 PCD 支持;Katie Dexter,英国 PCD 支持;Lucy Dixon,英国 PCD 支持;Trini L ó pez Fern á ndez,西班牙原发性纤毛诊断协会Susanne Grieder,Selbsthilfegruppe Primäre Ciliäre Dyskinesie,瑞士; Catherine Kruljac,澳大利亚 PCD 原发性纤毛运动障碍,澳大利亚; Michele Manion,PCD 基金会,美国; Bernhard Rindlisbacher,Selbsthilfegruppe Primäre Ciliäre Dyskinesie,瑞士; Hansruedi Silberschmidt,Verein Kartagener Syndrom und Primäre Ciliäre Dyskinesie,德国。
1个国家主要实验室基础基本的土著药用植物资源利用,新疆物理与化学技术研究所,中国科学院,乌鲁姆奇,乌鲁姆奇,中国人民共和国2中国科学院2中华人民共和国Urumqi的新疆Uyghur自治区5广东省级化学测量和紧急测试技术主要实验室,广东省省级工程研究中心质量与安全研究中心,中国分析中心,中国国家分析中心,广场分析中心,中国广场分析中心,中国人民分析中心,中国人民分析中心
1 Childhood Genetic Diseases, Sorbonne University, Inserm, Armand-Trousseau Hospital, Paris, F-75012, France 2 Genomic Medicine Service, Public Assistance Hospitals de Paris (AP-HP), University of Paris, Cochin Hospital, Paris, F-75014, France 3 Service of Oto-Rhin-Laryngology and Cervico-Facial Surgery, AP-HP, Bicêtre Le Kremlin-Bicêtre医院,F-94270,法国4 Institut Mondor de Recherche Biomedique,Paris-Paris-Es-Créteil大学,INSERM U955,CNRS ERL7240,Hénri-Mondor Hospital,Créteil,France france france for Persir forsir forsir forsir forsity persisy for Persir persiration persir persirice crame,crénri-bord Hospital,france for persir cumpiritiation pessir, AP-HP,Sorbonne University,Armand-Trousseau医院,巴黎,F-75012,法国6儿科,Chu Grenoble Alpes,Grenoble,Grenoble,F-38500,F-38500,F-38500,7肺气学和儿科过敏症服务法国克雷特尔市CréteilIntermunal医院中心,法国94000,9分子遗传学,AP-HP,AP-HP,Armand-Trousseau医院,巴黎,F-75012,巴黎10号,巴黎10染色体遗传学,AP-HP,AP-HP,Trousseau,Trousseau医院,巴黎,HONT HOSTER CERMENT,FRASE HOSTER SURM SUUN SUUN Surry Surry intercortial Surrim intercorter Intercorment Intercorment Interri criri-cerrim criri surry-criri-criri-criri-criri incer intercrien incrigh克雷特尔(Créteil),克雷特尔(Créteil),F-94000,法国
摘要 微生物成分对胎儿大脑有一系列直接影响。然而,人们对介导这些影响的细胞靶点和分子机制知之甚少。神经祖细胞 (NPC) 控制大脑的大小和结构,了解调节 NPC 的机制对于理解大脑发育障碍至关重要。我们发现心室放射状胶质细胞 (vRG),即主要的 NPC,是抗生素治疗产妇肺炎期间产生的细菌细胞壁 (BCW) 的靶点。BCW 通过缩短细胞周期和增加自我更新来增强 vRG 的增殖潜力。扩增的 vRG 繁殖以增加所有皮质层的神经元输出。值得注意的是,识别 BCW 的 Toll 样受体 2 (TLR2) 位于 vRG 中初级纤毛的底部,BCW-TLR2 相互作用抑制纤毛发生,导致 Hedgehog (HH) 信号的解除抑制和 vRG 扩增。我们还表明,TLR6 是 TLR2 在此过程中的重要伙伴。令人惊讶的是,在健康条件下,仅 TLR6 就需要设定皮质神经元的数量。这些发现表明,来自 TLR 的内源性信号在新皮质正常发育过程中抑制皮质扩张,而 BCW 通过 TLR2/纤毛/HH 信号轴改变大脑结构和功能来拮抗该信号。
覆盖初级纤毛的质膜上积聚了多种受体和通道。为确保纤毛的传感功能,纤毛膜的胆固醇含量高于其他细胞膜区域。过氧化物酶体生物发生障碍 Zellweger 综合征以多囊肾为特征,与细胞中纤毛胆固醇水平降低有关。然而,纤毛胆固醇降低导致多囊肾病的病因机制仍不清楚。在这里,我们证明通过药物治疗或过氧化物酶体的基因耗竭降低纤毛胆固醇会损害纤毛离子通道多囊蛋白-2 的定位。我们还生成了培养的肾髓质细胞和携带在常染色体显性多囊肾病患者数据库中检测到的多囊蛋白-2 胆固醇结合位点错义变体的小鼠。这种错义蛋白显示正常通道活性,但定位到纤毛膜的频率降低。纯合小鼠表现出胚胎致死和内脏反位和多囊肾的纤毛病谱。我们的研究结果表明胆固醇控制多囊蛋白-2的纤毛定位以预防多囊肾病。
摘要 中心粒卫星是高阶组装体,由蛋白质 PCM1 支撑,以粒子形式围绕中心体运动,在基本细胞过程(尤其是纤毛生成和自噬)中发挥关键作用。尽管存在涉及磷酸化和泛素化的严格控制机制,但塑造这些结构的翻译后修饰的前景仍然难以捉摸。本文,我们报告了一种小分子坏死磺酰胺 (NSA),该小分子以结合和灭活坏死性凋亡细胞死亡的关键效应物 MLKL 而闻名,它独立于 MLKL 与中心粒卫星、纤毛生成和自噬相交叉。NSA 是一种强效氧化还原循环剂,可触发 PCM1 与选定伙伴的氧化和聚集,同时对中心粒卫星的整体分布影响最小。此外,NSA 介导的 ROS 生成会破坏纤毛生成并导致自噬标记物的积累,而 PCM1 缺失可部分缓解这一现象。总之,这些结果将 PCM1 确定为氧化还原传感蛋白,并为中心粒卫星与自噬之间的相互作用提供了新的见解。
靠近水生食物链底部的纤毛微生物要么游动去寻找猎物,要么附着在基质上并产生摄食流来捕获路过的颗粒。在这里,我们使用一种流行的粘性流体球形模型来表示附着和游动的纤毛虫,其滑动表面速度可以提供纤毛流动的解析表达式。我们求解了溶解营养物浓度的平流扩散方程,其中佩克莱特数 (Pe) 反映了扩散与平流时间尺度的比率。对于固定的流体动力学功率消耗,我们问什么纤毛表面速度可以最大化微生物表面的营养通量。我们发现优化进食的表面运动取决于 Pe。对于在有限 Pe 下自由游动的微生物来说,采用“跑步机”表面运动来游动是最佳选择,但在 Pe 较大的极限下,这种跑步机解与保持生物体静止的对称偶极表面速度之间没有区别。对于附着的微生物,在 Pe 低于临界值时,跑步机解决方案是最佳的进食方式,但在 Pe 值较大时,偶极表面运动是最佳的。我们在开环数值模拟和渐近分析中验证了这些结果,并使用了基于伴生的优化方法。我们的研究结果挑战了现有的“最佳进食就是在所有佩克莱特数上最佳游动”的说法,并为海洋微生物中附着和游动解决方案的普遍性提供了新的见解。
摘要 Koolen-de Vries 综合征 (KdVS) 的特征是过度社交、智力障碍和癫痫,是由 KANSL1 基因的致病变异引起的,该基因编码 NSL 复合物中的染色质调节剂,也直接在有丝分裂纺锤体微管稳定性中发挥作用。在这里,我们探索了 KANSL1 是否在纤毛中发挥作用,纤毛是一种富含微管的细胞器,对大脑发育、神经元兴奋性和感觉整合至关重要。利用 Xenopus 模型,我们发现 Kansl1 在发育中的纤毛组织中高度表达并定位在运动纤毛内。此外,Kansl1 耗竭会导致纤毛发生缺陷,而人类 KANSL1 可以部分挽救这种缺陷。根据这些发现,我们探讨了 99 名 KdVS 患者(年龄从 1 个月到 37 岁)中纤毛相关临床特征的患病率,包括结构性心脏缺陷、性腺功能低下和结构性呼吸缺陷。为了直接测试 KdVS 是否会导致人类纤毛功能障碍,我们在 11 名受影响的个体中测量了已证实的纤毛功能生物标志物鼻腔一氧化氮,并观察到与未受影响的家庭成员相比显着下降。总之,这项研究确定了 KANSL1 突变对 KdVS 的纤毛贡献。这项研究为越来越多的文献增添了新的内容,强调了纤毛与神经发育障碍的相关性,特别是与影响社交能力的障碍。展望未来,KANSL1 提供了一个独特的机会来研究社交过度的单基因机制,这可能有助于阐明社会行为的分子基础。简介 Koolen-de Vries 综合征 (KdVS) 是一种神经发育障碍,其特征是社交过度、面部特征畸形、癫痫、智力障碍、呼吸缺陷、肾脏缺陷、先天性心脏缺陷、脑积水和肌张力低下 (Koolen、Morgan 和 de Vries 2023)。KdVS 是由基因 KANSL1(KAT8 调节性 NSL 复合体亚基 1)内的致病变异或其相关基因组位点 17q21.31 的微缺失引起的(Moreno-Igoa 等人2015;Koolen、Morgan 和 de Vries 2023)。虽然 KANSL1 最广为人知的作用是作为 KAT8(赖氨酸乙酰转移酶 8)的染色质调节剂,
1心理学的认知,情感和方法系,维也纳大学,奥地利维也纳大学。2心理学系和瑞士情感科学中心,瑞士日内瓦大学。3纽约大学心理学系,美国纽约,美国。 4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。 5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch3纽约大学心理学系,美国纽约,美国。4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。9认知科学中心,维也纳大学,奥地利维也纳。10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。11当前地址:环境与气候研究中心(ECH),奥地利维也纳。电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch