开发了基于药物的治疗神经干细胞(NSC)迁移的模型,并用于预测幼稚小鼠脑中NSC的迁移。该模型利用了广义Q采样成像,该成像能够解析大脑中交叉的白质纤维,并显示出与扩散张量张量成像相比,可以更好地说明NSC迁移模式的变化。在将模型校准为实验数据时,我们表明该模型能够重现小鼠大脑中NSC的分布。此外,我们表明NSC在小鼠大脑中的分布对NSC注入的位置敏感。NSC在嗅球上的持续分布与包括和尾迁移的发育途径一致,这表明幼稚大脑中的治疗NSC的未来模型可能需要包括其他因素,例如趋化性或血液流量,例如在NSC迁移路径中考虑变化。结果突出了该模型在预测哪些注入位置可能为给定目标位置提供最佳分布的有用性。
[图片来源:纤维肉瘤]软组织包括:•脂肪•肌肉•肌腱(将骨骼连接到肌肉的纤维带)•神经•关节组织•血管•血管•其他纤维组织最常见的情况会影响下腿或小腿。儿童纤维肉瘤通常有两种形式的这种疾病:婴儿(儿童)或先天性纤维肉瘤 - 这种类型的肿瘤是一岁以下儿童中最常见的软组织肉瘤。它表现为出生时或之后不久的质量迅速增长。这种形式的纤维肉瘤通常是生长缓慢的,并且在大儿童中比纤维肉瘤更良性,这种表现更像是成年人中发现的类型。成年形式的纤维肉瘤 - 这种疾病的成年形式可能发生在年龄较大的儿童和青少年中,大约在10至15岁之间。它比婴儿形式更具侵略性,通常涉及更复杂的治疗方法。
*** 南卡希亚斯大学 (UCS),Campus Sede,R. Francisco Getúlio Vargas,1130 - Petrópolis,RS **** 圣保罗州立大学 (UNESP) 工程学院材料与技术系、疲劳与航空材料研究组,瓜拉廷格塔,SP,巴西 ✉ 通讯作者:Heitor L. Ornaghi Jr.,ornaghijr.heitor@gmail.com 2020 年 6 月 15 日收到 木质生物质因其成本低、可再生和环境友好而成为生产生物能源的化石燃料的替代品。为了将生物质用作能源,强烈建议了解其热降解行为。这项工作重点研究了巴西木材行业常用的不同树种(湿地松 (PIE)、大桉 (EUG) 和伊塔乌巴 (ITA))的木纤维的热降解。使用 F 检验统计工具,基于最常见的理论数据预测了它们的降解动力学和整体热行为。发现最可能的降解机制是所有测试的木纤维的自催化,具有三个不同的降解步骤。获得的结果与最近在文献中使用其他拟合方法报告的结果一致。发现纤维素是阿伦尼乌斯参数的主要贡献者,而半纤维素是反应级数的主要贡献者。关键词:建模和仿真、木纤维、热分解、热解、模型拟合引言根据欧盟 28 国 (EU-28) 的政策,预计生物能源(包括生物热能、运输用生物燃料和生物电能)将贡献 2021 年可再生能源目标的一半。相比之下,2015 年,生物能源消耗量是 2000 年石油消耗量的两倍多。1 全球使用的森林生物质的一次能源供应量估计约为 56 EJ,这意味着根据世界能源理事会的数据,木质生物质占每年供应的所有能源的 10% 以上,2 每年约 90% 的一次能源来自所有形式的生物质。3 因此,考虑到木材固有的可再生性,木质生物质和木材加工残留物对于满足未来的能源需求至关重要,尽管可持续管理森林资源势在必行。
背景和目的:饮食纤维主要由肠道菌群发酵,但它们在结直肠癌(CRC)中的作用在很大程度上不清楚。在这里,我们研究了小鼠中大肠肿瘤发生不同纤维的关联。方法:APC最小/Þ小鼠和C57BL/ 6小鼠,含有偶氮甲烷(AOM)注射作为CRC小鼠模型。小鼠以混合的高纤维饮食(20%的可溶性纤维和20%的不溶性纤维饮食),高含因饮食,高蛋白质胶饮食,高纤维素饮食或不同含量剂量的饮食喂食。菌种 - 无小鼠用于验证。粪便菌群和代谢产物分别由shot弹枪宏基因组测序和液相色谱法 - 质谱分别为主导。结果:混合的高纤维饮食促进了结直肠肿瘤的发生,并且在AOM处理和APC最小小鼠中肿瘤数量和肿瘤负荷增加。抗生素使用
摘要由于其高生产成本高的特异性刚度和强度,短纤维增强塑料(SFRP)取代了越来越常见的材料,例如技术设备中的钢或铝。即使SFRP在宏观水平上均匀地作为材料起作用,由于纤维形态(方向,长度和体积含量),在微观水平上形成各向异性。结果,由SFRP制成的组件在焊接线处具有较低的强度和刚度,或者厚度的差异可能导致组件故障。因此,SFRP中纤维形态的知识对于组件设计至关重要。确定纤维形态的一种方法是计算机断层扫描(CT)。由于几微米(〜7-20 µm)的纤维直径较小,因此由于必要的高放大倍率,层析成像的视野降低了。因此,标准CT系统只能用于检查具有较大体积的组件的成分和纤维形态的代表性,破坏性的样品,不能非破坏性地分析。在这项工作中,研究了一种方法,其中将少量衰减的示踪剂纤维添加到塑料中的增强纤维中,从而增加了对比度与噪声比率。这允许减少几何放大倍率,并可以实现更大的视野。
基于蛋白质的微纤维在生物工程和食品领域具有潜在的应用,但在微米级上保留和利用其蛋白质构件的独特纳米机械性能仍然是一项挑战。本研究通过同轴微流体纺丝果胶和 β-乳球蛋白在不同构象状态(单体、淀粉样蛋白原纤维、缩短的淀粉样蛋白原纤维,处于各向同性/向列相)下自下而上制造核壳纤维,在 CaCl 2 溶液中凝胶化。纤维直径范围为 478 至 855 μ m(湿态)和 107 – 135 μ m(干态)。它们显示出清晰的核壳横截面,但果胶-β-乳球蛋白单体纤维除外,据推测紧凑的蛋白质会扩散到果胶基质中。纤维构建块的分子取向表示为有序参数,代表果胶链和淀粉样蛋白原纤维平行于纤维轴的排列,该参数通过空间分辨率为 20 μ m 的同步加速器广角 X 射线散射 (WAXS) 计算得出。与纯果胶纤维相比,引入淀粉样蛋白原纤维作为蛋白质核心可使杨氏模量从 3.3 增加到 6.4 GPa,拉伸强度从 117 增加到 182 MPa。然而,将蛋白质核心流速从 1 mL/h 增加到 2 mL/h 会导致核心喷射螺旋弯曲、有序性降低,最终导致机械性能恶化。总体而言,与缩短的淀粉样蛋白原纤维相比,全长淀粉样蛋白原纤维对机械性能更有益。通过深入了解蛋白质构象、纺丝流速和由此产生的核壳微纤维的机械性能之间的关系,这些结果可能有助于新型纤维蛋白质材料领域。
开发了基于药物的治疗神经干细胞(NSC)迁移的模型,并用于预测幼稚小鼠脑中NSC的迁移。该模型利用了广义Q采样成像,该成像能够解析大脑中交叉的白质纤维,并显示出与扩散张量张量成像相比,可以更好地说明NSC迁移模式的变化。在将模型校准为实验数据时,我们表明该模型能够重现小鼠大脑中NSC的分布。此外,我们表明NSC在小鼠大脑中的分布对NSC注入的位置敏感。NSC在嗅球上的持续分布与包括和尾迁移的发育途径一致,这表明幼稚大脑中的治疗NSC的未来模型可能需要包括其他因素,例如趋化性或血液流量,例如在NSC迁移路径中考虑变化。结果突出了该模型在预测哪些注入位置可能为给定目标位置提供最佳分布的有用性。
Optical Specifications SMR-EYDF-6/110/125-HTA SMR-EYDF-10P/110/125-HTA Operating Wavelength 1530 - 1625 nm 1530 - 1625 nm Core NA 0.21 0.14 First Cladding NA (5%) 0.23 + 0.01 0.23 + 0.01 Second Cladding NA >0.46 >0.46 Core Attenuation ≤ 200 dB/km在1310nm≤200db/km处,在1310 nm核心吸收时60 + 10 db/m接近1530 nm 75 + 20 db/m,接近1530 nm的1530 nm覆层吸收2.0 + 1.0,在915 nm 2.7 + 1.0处,在915 nm cladding untenuation≤15db/km处于1095 nm/km/km/km/km/km/km/km/km/km/km/km/