多乳酸(PLA)或聚乳酸是由可再生源(蔬菜,玉米,糖)产生的,是最常用的可生物降解材料。它是最常用的生物降解聚酯,由于其良好的强度,生物相容性和生物降解性。然而,其生物降解需要在微生物在某种培养基中作用之前将PLA水解为低聚物或单体。这些单体对于减少原材料的必要性以及与PLA生产和处置相关的环境影响至关重要[1-9]。它的降解取决于所使用的化学,物理和生物学剂,分子和超分子结构的聚合物,即晶体形式,pH,水解降解的速率,D-酯异构体的含量,温度,纳米材料的含量。完成化学/物理过程后,水解是随机的,而当酶进行水解时,则在聚合物链的结尾发生水解。水解发生在无定形区域,这导致结晶度的增长[6-9]。
后期:Bilal M.,Lopez-Aguayo S.,Szczerska M.,Madni H.,使用等离子体材料和磁性流体基于光子晶体纤维的多功能传感器,OSA Continuum vol。61,ISS。 35(2022),pp。 10400-10407,doi:10.1364/optcon.456519©2022 Optica Publishing Group。 只能为个人使用而制作一张或电子副本。 系统的复制和分布,本文中的任何材料的复制,以收费或出于商业目的或本文内容的修改。61,ISS。35(2022),pp。10400-10407,doi:10.1364/optcon.456519©2022 Optica Publishing Group。只能为个人使用而制作一张或电子副本。系统的复制和分布,本文中的任何材料的复制,以收费或出于商业目的或本文内容的修改。
摘要 - 现在,混凝土用于最大的建筑项目,并且在不久的将来,没有其他选择。有必要开发更好的质量混凝土,以延长生存更长的生存并具有提高机械品质,以延长任何结构的使用寿命,因为大量混凝土被用于新建筑工作。不可能改变其天生的易碎性或对任何混凝土结构的拉伸强度的要求。纤维增强混凝土(FRC)似乎是可行的替代品。聚酯和聚丙烯纤维(PP)作为混凝土中的二级加固以改变其脆性特性的实际应用是本研究论文的主要主题。在这项调查中采用了M40级混凝土等级。结果,将不同比例的聚酯和聚丙烯纤维添加到混凝土中。按该顺序按混凝土的重量进行0.32、0.37、0.42和0.47。为了研究聚酯和聚丙烯在混凝土中的使用,进行了一系列受控的实验室测试。对于压缩和弯曲强度,仅在第一个样品中评估了基本混凝土混合物。在0.32、0.37、0.42和0.47%的聚丙烯纤维中分别评估第二个样品的抗压强度和弯曲强度,将其添加到混凝土混合物中。在第三个混凝土样品中测试了聚酯和聚丙烯纤维。演示了如何在混凝土中添加纤维可以提高其质量。
帕克博士:这些定义有特定的标准。益生菌是活体生物,在足够的量中赋予健康益处;它们通常是细菌性质的,但是酵母益生菌在兽医学中变得更加流行。您正在提供一定数量的,通常是活的微生物,这些生物将有助于重新建立肠道平衡。益生元是有益的肠道微生物的不可消化食品,它们的作用与可溶性纤维类似。它们通常会发酵以影响肠道微生物组,并且通常包括在宠物食品中,但也可以补充。示例包括菊粉,灌肠工具含糖和菊苣。综合药是包括益生菌和益生元的产品,并被归类为互补或协同作用。和添加到此列表的最新术语是后生生物。后生物学是肠道中益生元和益生菌的细分产生的化合物。短链脂肪酸是最常见的后生物后脂肪酸,它们在肠道和系统上可能具有许多有益的作用。我很少开处方益生菌,因为我做了很多慢性肠病咨询,许多人已经在益生菌上,并且仍然有腹泻的临床迹象,所以我不觉得单独亲生动物通常会在这些慢性肠病患者中产生很大的不同。我还没有将Saccha-Romyces Boulardii用作基于酵母的益生菌,但这是一个新兴的选择。在俄亥俄州立大学,我们的ER定期将家纤维送入急性腹泻病例。i更多地涉及益生菌,例如可疑的抗生物诱导的营养不良或急性腹泻。如果患者患有急性腹泻,他们需要离开诊所,我通常会给他们纤维补充剂,无论是食物中还是补充食物。我们不会在这里发送甲硝唑或抗生素;我们用纤维将它们送回家。
普通英语的摘要背景和研究目的是纤维肌痛综合征(FMS)的原因,这是一种广泛的慢性(持久)疼痛状况,目前尚不清楚。治疗通常无效,许多患者遭受无屈服的疼痛而没有缓解的疼痛。FMS与其他症状有关,包括在不同温度下的疼痛变化,应对身体各个部位的压力,肠子问题,睡眠不良,疲劳和记忆问题的疼痛。患者通常会因这些无法解释的症状而感到困惑和困扰。该研究小组的最新研究表明,许多患者的血液中有称为自身抗体的物质,引起FMS症状。这些自身抗体还会影响患者最舒适的温度。,但目前没有足够的证据使医生能够告知患者FMS的温度依赖性的普遍性。本研究旨在调查患者对自己最佳温度的看法,以及温度的变化如何影响他们的其他FMS症状及其对压力的敏感性。这项研究的结果以及先前的实验室测试的结果将使医生能够更好地解释症状对患者的温度依赖性。将患者的症状置于背景下,并了解其他患有相同疾病的患者的状况应减少患者的困扰。
背景:剖宫产率在全球范围内提高,引起了对相关并发症(例如地激素)的担忧。iSth-螺旋体是前子宫壁的袋状缺陷,位于先前的剖宫产疤痕部位。目的:本研究旨在确定具有剖宫产史的女性中的地激素患病率,相关症状和危险因素。研究设计:这项横断面研究评估了297名使用经阴道超声以筛选地缘静脉曲张的剖宫产的女性。收集了有关人口统计学,妊娠细节,合并症和剖宫产的适应症的数据。等距地等卡在宫腔切开术部位被定义为任何位置或缺陷。描述性和比较分析与静脉曲张相关的识别因子。结果:等地层流行率为65.3%(n = 194)。据报道了阴道出血异常。与没有地激素的女性相比,那些地质静脉曲张的女性年龄较大(35.9 vs 31。6年),体重指数较高(26.8 vs 25.5 kg/m 2),急性(1.8 vs 1.3)和均等(1.7 vs 1.2)。重复剖宫产更为普遍(30.4%vs 12.6%)和剖宫产分娩率较低(33.5%vs 67.9%)在静脉菌属中。结论:超过一半的剖宫产史的妇女具有地等环静脉。异常出血很常见。高级产妇年龄,肥胖,重复程序和某些合并症似乎增加了风险。鉴于高流行率,对预防和治疗的进一步研究是战争的。鉴于高流行率,对预防和治疗的进一步研究是战争的。
奥林巴斯技术使人们能够轻松准确地观察隐蔽部位,而不会破坏或干扰其外观。奥林巴斯通过其全面的工业内窥镜系列提供了更大的潜力。这个无与伦比的产品系列包括视频内窥镜、光纤内窥镜、硬式内窥镜、微型内窥镜和各种辅助设备,以满足您的特定要求。这些内窥镜均提供卓越的观察能力,这些能力是通过结合光学、精密工程和电子方面的专业知识实现的,这些专业知识是作为全球医疗内窥镜领域的领导者多年经验的结晶。考虑到易用性和耐用性,很明显,奥林巴斯工业内窥镜是质量控制和维护、自动检查、研发等的理想选择,可帮助您提高生产力、安全性和可靠性。
FRPC的回收利用是由于废物(材料混合)的复杂性,消费后产品中的杂质以及用于收集废物收集的非开发基础设施而变得复杂。此外,材料特性通常由于恶劣的回收条件而恶化,并且矩阵或纤维被检索,但很少两者。[7]因此,现有技术的成本很高,回收材料的市场有限。neverther,必须增加FRPC的回收利用,以弥补FRPC市场的可持续性和循环性。,例如,Windeurope是一家500多家公司的财团,出版了一份职位文件,该论文承诺到2025年,以重复使用,回收或恢复100%的退役刀片,叶片废物预先设置为每年约25 000吨,到2025年。[8]
1.0简介Aramid纤维(AFS)是一类高性能有机聚合物纤维,以其出色的机械性能,耐热性和化学稳定性而闻名。自1964年发明以来,AFS已成为从航空航天和防御到运动器材和电绝缘材料的广泛应用中必不可少的材料。[1-5]芳香虫的独特特性归因于其分子结构,该结构由酰胺基团相连的芳族环组成。在旋转过程中实现的高度分子取向也沿纤维轴赋予强度和刚度。商业AFS主要基于两种聚合物 - 聚(P-phenylene terephalamide)(PPTA)(PPTA),销售为Kevlar和Twaron,以及聚(M-phenylene isophthalamide)(MPIA)(MPIA),以商业上称为Nomex。近年来还看到了其他特种弧菌的出现,例如聚(P-苯基苯甲甲行唑)(PBO)和具有增强的热耐药性的杂环芳烃[6-9]。在过去的几十年中,已经采用了一系列干燥和湿的旋转技术来生产商业AF。旋转过程的选择取决于聚合物类型,所需的纤维特性和过程经济学。在本综述中提供了不同旋转方法以及芳香旋转技术的关键发展。最近的制造芳香
对可持续材料的日益增长的需求激发了对自然来源衍生的纳米纤维素的兴趣。这项研究的重点是使用纤维素酶通过酶水解从椰子纤维中合成纳米纤维素。为了优化生产过程,使用了1500 U/ml的纤维素酶浓度,并具有不同的酶体积(100、200、300、400和500 µL)。预处理步骤包括10%NaOH的划定和40%H 2 O 2的漂白,从而促进纤维素提取。综合分析表明,椰子纤维含有42.95%的α-纤维素,72.51%全纤维素,29.56%的半纤维素和22.77%的木质素。加入400 µL纤维素酶,达到了10.21 µm的最佳纳米纤维素大小(NSSK),表明纤维的酶促分解有效。扫描电子显微镜(SEM)表征了具有细纤维和表面不规则性的不均匀形态。傅立叶变换红外光谱(FTIR)的结果显示出显着的化学变化,包括在1728 cm -cm -1时峰值降低,峰从1600 cm -到1598 cm -μ的变化,以及在1028-1050 cm -〜1028-1050 cm -〜的范围内的增强峰。这些改变表明有效修饰木质素和半纤维素,证实了从椰子纤维成功生产环保纳米纤维素的。调查结果强调了利用椰子纤维作为纳米纤维素生产的可再生资源的潜力,为各种行业的可持续应用铺平了道路。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。