电纺聚合物纤维由于其多功能性,可调性和广泛的应用而引起了极大的关注。本期特刊探讨了电纺技术,新型聚合物材料以及具有增强功能的纤维的结构优化。的关键应用程序包括但不限于生物医学工程,包装,环境补救和智能纺织品,并提交智能纺织品,以及多物质和纳米结构纤维和纱线的新兴趋势。通过将尖端研究汇总在一起,本期特刊旨在促进基于聚合物的电纺纤维领域的进步,并激发高级工程应用中的小说和绿色用途。
编辑:N。Lambert我们应用强化学习(RL)来生成重新旋转多面体的定期恒星三角剖分,从而产生光滑的calabi-yau(CY)高度表面。我们证明,通过对数据编码和奖励功能进行简单的修改,可以搜索满足一组理想的字符串压缩条件的CY。例如,我们表明我们的RL算法可以生成三角形,以及圆形矢量束,可满足异源压缩异常的异常和多稳定性条件。此外,我们表明我们的算法可用于搜索转移的亚polypoltopes以及定义CYS的兼容三角形的副产品。
'lhwdu和dq dq lpsuwdqw frpsrqhqw ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri is is is is is is is is isiss isisssissionary and inscuem suhjqdf,这与prwkhuv一起ri ehqhilwv与prwkhuv一起,这是伊德尔斯(Edelslu)。 7klv uhylhz h [dplqhv uhfhqw uhvhdufk ank带有srvlly hiihfwv ri frqvxplq,然后离开hiihf。 glhw gxulqj suhjqdf 7kuffxuhqw vkrzv vkrz vkrz villaghs这是您的hould and lpsuryh。 frqvwlsdwlssdwlrq和frpsodlq ri ri ri右到达fxuhqw fxuhqw fxuhqw vilicy vily vily villy withs srwhqwldo uroh ri ri ri ri ri ri ri ri。 Intere lq uhjxodwlqj vxjdu ohyhov在dlglqj和dods中,以及及其权利中的遗物。 lpruwdqw iru pdwhuqdo khdowk)lqdoo whylhz h [dplqhv wkh vwh vwh vwh vwh srvleoh srvleoh uhodwlrqvkls ehwzhq lqfuhd uhgxfhg rive jhvwdwlrqdo gldehwhv和fxuhqw vwqw vwqw vwqw村庄与srwhqldo lpsdfw ri pdfw ilesoursicienationatationAtationAtationAtarationAtarationAtationAtationAratationArationArationality 7k。 lqwdnh rq whors lwv plfurrph ri想要和lwv lpsdfw rq orq orq whup khdowk
这是以下文章的同行评审版本:Chen, S., Hou, K., Li, T., Wu, X., Wang, Z., Wei, L. & Leong, W. L. (2022)。用于皮肤生物电子学的超轻、高渗透性和防水纤维有机电化学晶体管。Advanced Materials Technologies,最终版本已发布于 https://doi.org/10.1002/admt.202200611。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。
摘要 柔性电子研究人员一直在研究柔性可拉伸电极对应变的响应。当前柔性可拉伸电极中应变响应的调节主要依赖于改变材料体系、界面粘附或电极结构。然而,修改材料体系或界面粘附会对可拉伸电极的制备过程产生负面影响,使商业化成为一项重大挑战。此外,材料体系在高温等极端环境下可能不适用。因此,系统的结构设计方法对于有效调节可拉伸电极的响应至关重要。一个潜在的解决方案是从微观到宏观尺度的纤维结构设计。本文重点讨论如何通过不同状态下的纤维来调节可拉伸电极的响应。讨论包括弹性薄膜上的纤维、微观层面上直接构成纤维膜的纤维以及精细层面上构成超材料的纤维。这种调制可以通过改变纤维的方向、纤维本身的几何结构以及纤维之间形成的几何结构来实现。此外,本文还分析了可拉伸电极在高温等极端环境下的现状。它还回顾了可在高温环境下拉伸的陶瓷纤维膜的发展。作者进一步讨论了如何通过使用超材料对陶瓷纤维膜进行结构化来提高陶瓷纤维膜的拉伸性。最终目标是实现可在高温等极端环境下使用的可拉伸电极。
Snow Barlow 教授是一位农业科学家,其研究领域包括植物水分利用效率、气候变化对农业的影响以及全球粮食安全。他是墨尔本大学园艺和葡萄栽培学教授、ATSE 和澳大利亚农业科学研究所研究员。2009 年,他被授予澳大利亚农业科学奖章,并作为澳大利亚科学技术协会主席,担任总理科学、工程和创新委员会委员。他目前担任维多利亚州科学、知识和创新基金会主席以及农业部碳农业未来 RD&E 计划专家顾问小组主席。Barlow 教授曾担任 ARC 生物科学委员会委员和两家农村工业研究与开发公司的董事会成员。Kelvin Montagu 博士曾在澳大利亚和亚洲的农业、园艺和林业领域担任研究和管理职务,专门研究森林和农业景观中的碳和水循环。他目前经营 Colo Consulting,通过研究和教育项目为森林和农业景观提供自然资源成果。
在1930年代,斯塔姆和同事开始了一系列关于木材热稳定的研究(Stamm and Hansen,1937年)。Stamm的工作是基于对Tiemann(1920)的早期研究,他们表明木材的温度窑干降低了木材的吸湿性以及随后的肿胀和收缩。在高温下真空中加热木材会导致木质素流动,而半纤维素分解产生的水 - 不溶的聚合物。这种治疗方法提高了稳定性,但强度降低。一种这样的治疗被称为Staybwood(Stamm等人1946)。Staybwood是通过在熔融金属浴(50%TIN,30%铅和20%镉)的100-160 c°之间加热木材来制作的,熔点约为150 c°。这种合金不粘在木面上。用干氮循环的砂也用于加热饰面,其结果相似。加热时间从高温下的几分钟到在较低温度下的几个小时不等。随着加热时间和治疗温度的增加,Staybwood的维稳定性提高,而强度降低。在使肿胀和收缩减少40%的条件下,韧性降低到相同的程度。耐磨性也降低了。Staybwood的吸湿性大大降低了,并且对衰减的抵抗力得到了改善。
摘要:融合沉积建模(FDM)是一种生产原型和功能组件的良好制造方法。本研究通过材料和与过程相关的影响变量研究了FDM组件的机械性能。的拉伸试验以其原始丝形式的七种不同材料进行,其中两种是纤维增强的,以分析其与材料相关的影响。涵盖从相关的载荷组件的标准材料到高级材料及其各自的变化,聚乳酸(PLA),30%木纤维增强的PLA,丙烯硝基丁烷苯乙烯苯乙烯苯乙烯苯乙烯苯乙烯苯乙烯(ABS)(ABS)(abs),聚碳酸酯(PC),聚碳酸酯(PC),abled and nyls and nyls and nyls-frend-nyls-Flend ways-Flass-Flend ways ways-Flast-Flend-Flend ways-Flast-Flend ways-Flast-Flend。使用以下过程参数研究了与过程相关的影响变量:层厚度,喷嘴直径,构建方向,喷嘴温度,填充密度和模式以及栅格角度。第一个测试系列表明,由于缺乏与基质的纤维键合,木纤维的添加显着恶化了PLA的机械行为。ABS和PC的聚合物混合物仅显示刚度的改善。尽管纤维纤维 - 雄性雄性粘结部分较差,但通过嵌入尼龙中的玻璃纤维嵌入玻璃纤维,发现了显着的强度和刚度。选择具有最佳属性的材料进行过程参数分析。在检查层厚度对零件强度的影响时,明显相关。零件取向确实改变了测试样品的断裂行为。较小的层厚度导致较高的强度,而刚度似乎没有受到影响。相反,较大的喷嘴直径和下部喷嘴温度仅对刚度产生积极影响,对强度影响很小。尽管向边缘方向导致较高的刚度,但在较低的应力下失败了。较高的填充密度和与负载方向对齐的填充图案导致了最佳的机械结果。栅格角对印刷物体的行为产生了重大影响。与单向栅格角相比,交替的栅格角会导致较低的强度和刚度。但是,由于珠子的旋转,它也引起了显着的拉伸。
我们建议使用基于光纤的干涉仪搜索标量超轻暗物质(UDM),其颗粒质量在10 - 17-17-10-10 - 13-11 eV = C2ð10-3-3 - 10 Hz。由固体芯和空心芯纤维组成,该提出的检测器将对纤维折射率的相对振荡敏感,这是由于标量UDM诱导的调节型在细胞结构常数α中的调制。我们预测,通过实施检测器阵列或低温冷却,提出的基于光纤的标量UDM搜索有可能达到参数空间的新区域。这种搜索特别适合探测暗物质的太阳光晕,其灵敏度超过了先前的暗物质搜索在粒子质量范围7×10-17-17-2×10-14 eV = C 2上。
进一步决定,根据拟议的复兴计划和董事会批准的公司批准的公司商业运营以及公司批准的公司批准的方式,并以拟议出售的收益以及公司的董事会恢复了拟议出售的批准。进一步解决了,作为上述同意书的一部分,公司的首席执行官BE和特此被授权并有权完成所有必要的法律手续以实现主题解决方案。首席执行官还有权将其权力委托给任何人,因为他认为适当。进一步决定,首席执行官有权对巴基斯坦证券交易委员会指导的这些决议进行任何修改,