摘要 - 这项研究列出了通过乳液形成方法预处的壳聚糖微观结构中的长矛油(SMO)的封装。SMO虽然具有药物意义,但由于其在条件下的稳定性较小和高波动性,但在医疗和功能纺织品中发现了lim的应用。尽管如此,它在壳聚糖中的封装可能会增强其在上述目的的稳定性和适用性。使用不同的分析技术表征了SMO封装的壳聚糖微观结构,并通过柠檬酸的绿色交联应用棉织物。经过处理的织物揭示了通过SEM和FTIR分析证实的微胶囊的成功粘附在其表面上。那里观察到处理的织物的拉伸强度略有下降;然而,通过减少其99%的人口,改善了折痕恢复行为和良好的抗菌活性,以应对广谱细菌菌株;而这种织物的刚度在某种程度上表现出趋势。因此,在此产生的增值多功能纺织品可以为潜在的医疗和医疗保健应用提供表面和抗菌活性,而不会损害其舒适性。
镉(CD)是最危险的微量金属之一,Rapeseed是世界上主要的石油作物,其木质纤维素残基可用于痕量金属植物植物修复和纤维素乙醇共生产。在这项研究中,我们检查了两个不同的菜籽品种可以在72.48和43.70 ug/g干茎上积聚CD,这是所有主要农业粮食作物中最高的CD积累。CD的积累显着增加了果胶沉积,这是痕量金属与木质纤维素结合的主要因素。同时,CD蓄积的菜籽茎含有大量降低的壁聚合物(半纤维素,木质素)和纤维素的聚合度,从而改善了木质纤维素酶水解。值得注意的是,通过显着提高纤维素可及性和木质纤维素孔隙率,进行了三种最佳化学预处理,以增强生物质酶糖含量和生物乙醇的产生,以及用于
有效的酶促生物量在可发酵糖中的酶糖含量可以使乙醇等生物产生产生。天然结晶纤维素或纤维素I是通过酶水解不具体处理的,但可以通过纤维素蛋白酶鸡尾酒加工为源自毛resei的纤维素蛋白酶鸡尾酒来转化为结构上不同的纤维素III同种异体,最高可达20圈。然而,像固定蛋白纤维素酶CEL7A一样,来自T. resei的单个纤维素酶的表征显示出低酶载荷对纤维素III的结合和活性降低。为了澄清这种差异,我们使用光学镊子力量谱监测了CEL7A engymes和相关的碳水化合物结合模块(CBM)的单分子初始结合承诺以及随后的过程运动运动。我们确定了初始结合承诺降低48%,而CEL7A对纤维素III的慢摄影运动速度慢了32%,我们假设这源于CEL7A结合结构域CBM1的结合功能的降低。经典的CBM - 纤维素拔下测定,具体取决于所拟合的吸附模型,在CBM1结合纤维素III中的CBM1结合功率中降低了1.2至7倍。力光谱测量CBM1 - 纤维素相互作用以及分子动力学模拟,表明使用多站点吸附模型对经典结合测定结果的先前解释可能具有复杂的分析,而是建议应使用更简单的单位模型。通过对两个纤维素同种异体的其他A型CBM(CBM2A,CBM3A,CBM5,CBM10和CBM64)的结合分析来证实这些发现。最后,我们讨论互补分析工具如何至关重要,以深入了解纤维素分解酶和相关的碳水化合物结合蛋白的不溶性多糖水解的复杂机制。
根据形态和来源,纳米级纤维素(即纳米纤维素)可分为三类,包括纤维素纳米晶体(CNC)、纤维素纳米纤维(CNF)和细菌纳米纤维素(BNC)。前两类来自植物(Yadav et al., 2021),而细菌纳米纤维素来自微生物(Ullah et al., 2017)。此外,纳米纤维素还可从藻类(Ruan et al., 2018)和动物(Bacakova et al., 2019)中获得,也可以通过无细胞酶系统合成(Kim et al., 2019)。目前,纳米纤维素的研究主要从三个方面进行:生产、品质提升和功能化,以用于各种生物技术应用。例如,植物纤维素含有木质素、半纤维素和矿物质,应将其去除以获得高纯度和质量的纳米纤维素(Ul-Islam 等,2019a)。为此,人们已开展努力来开发绿色方法,以尽量减少或避免使用木质纤维素材料水解所需的有毒化学品。另一方面,细菌生产 BNC 的产量和生产率低,生产成本高。因此,已采用菌株改良、共培养、开发工程菌株和先进反应器等多种策略来提高 BNC 的产量和生产率(Islam 等,2017;Sajadi 等,2019;Moradi 等,2021)。同时,不同的农业工业废弃物已被用作细菌生产BNC的碳源(Velásquez-Riaño和Bojacá,2017年;Ul-Islam等,2020年;Zhou等,2021年)。同样,虽然不同类型的纳米纤维素具有令人印象深刻的形态和物理化学特性并且无毒,但它们不具备材料的一些理想特性,如粘合位点、抗菌和抗氧化活性、电磁特性和催化活性,因此需要进一步改性(Picheth等,2017年;Vilela等,2019年)。由于相似的表面化学性质,所有类型的纳米纤维素都通过相同的化学策略进行改性,如酯化(Spinella 等人,2016 年)、醚化(De La Motte 等人,2011 年)、酰胺化(Kim 等人,2015 年)和氧化(Khattak 等人,2021 年),以及通过氢键、静电相互作用、亲水/疏水相互作用和 π - π 堆积进行物理改性,其中纤维素的游离 OH 基团直接与富电子的胺基、氧原子和羧基相互作用并形成氢键(Ullah 等人,2019 年)。由于不同类型的纳米纤维素具有独特的表面化学性质、多样性和令人印象深刻的特性,它们可应用于生物医学(Wang 等人,2021 年)、环境(Shoukat 等人,2019 年)、纺织(Felgueiras 等人,2021 年)、制药(Raghav 等人,2021 年)、能源(Zhang 等人,2020 年)、增材制造(Fourmann 等人,2021 年)、化妆品(Bianchet 等人,
从远古时代到今天,人类已经进行了许多研究,以使他们的生活更轻松。由于这些研究,他们旨在发现新事物。随着工业革命,开始生产石化材料。这些材料经历了各种化学阶段的事实已成为对人类健康的威胁。此外,石油衍生的材料在本质上仍然存在数百年而没有降解,而环境问题的平行增加使人类无法寻找不同的资源。在这项工作中,提供了有关从纤维素获得的衍生物类型的一般信息,这在本质上是最常见的。©2023 DPU保留所有权利。关键字:纤维素;纤维素衍生物;纤维素乙醚衍生物;纤维素酯衍生物
引言细菌纤维素(BC)是由一些微生物产生的合成物质,其在生物医学和食品行业中替代植物纤维素的潜力很高(Zhao等,2018)。在生物医学中,BC用作组织工程,人造皮肤,伤口敷料和药物输送载体的材料(Rajwade等,2015)。bc在食品行业中被商业化为Nata de Coco,并用作脂肪替代品,人造肉和稳定剂,以用于皮带乳液(Azeredo等,2019)。BC具有环保生物聚合物的出色特征,该生物聚合物在全球经济中起着至关重要的作用。它用于许多行业,例如纺织品和造纸领域(Shi等,2014)。与植物纤维素相比,BC含有高纯度,因为它没有木质素和半纤维素。此外,卑诗省具有高度的聚合,高结晶度,良好的拉伸强度和高水位的能力(Krystynowicz等,2002)。由木浆产生的纤维素可能带来环境问题,例如森林砍伐。由于该因子,从细菌合成的纤维素被选择作为植物纤维素的替代品(Hashim等,2021)。
木材由三种主要有机聚合物组成:纤维素、木质素和半纤维素。纤维素约占木材干重的 50%。它是木材中的主要强化材料,提供结构支撑。木质素约占木材干重的 25%。它使树木具有刚性,充当天然粘合剂,同时也使树木具有防水和抗降解性。半纤维素占木材干重的 25%,具有两种独特的作用。首先,它有助于将纤维素和木质素结合在一起。其次,它含有大量的水分吸附位点,因此有助于在细胞壁中储存更多的水。
摘要最近,COVID-19大流行对世界各地的个人和社会产生了极大的影响。这项研究旨在描述瑞典中学(10-12岁)学生对细菌和病毒的理解,从而说明了大流行在学校和社会中的影响。数据是通过半结构化的各个视图和要求学生绘制图像的。使用了访谈成绩单的主题编码和学生注释图纸的内容分析。图纸上微生物的形态通常是“电晕”的,具有圆形和突出的部分。病毒被认为比细菌大,但有时也相似。细菌和病毒之间的相互关系用上等微生物表达。学生将微生物像细胞一样,从不将它们描绘成动物或具有拟人化特征。病毒被认为比细菌引起更严重的疾病。学生很少将特定病毒束缚在特定的传染病上,并经常将(病毒和疾病)称为“电晕”。然而,当它们确实建立连接时,病毒被认为会引起流感和covid-19,细菌会引起感冒和鼠疫。通常,这些结果表明,病毒在COVID-19的后果中在小学生的脑海中获得了微型iSM的更为明显的位置。
1东北生物技术网络(Renorbio),佩南布科农村联邦大学,Dom Manuel de Medeiros Street,S/N-DoisIrmão,Recife 52171-900,巴西PE; Julia.didier@ufrpe.br(J.D.P.D.A.); Alexandre.medeiros@iati.org.br(A.D.M.D.M.); claudio.junior@iati.org.br(C.J.G.D.S.J.)2高级技术与创新研究所(IATI),Potyra Street,n。 31,Prado,Recife 50751-310,PE,巴西; Yasmim.2020107612@unicap.br(Y.D.F.C.); italo.durval@iati.org.br(I.J.B.D.); andrea.santana@ufpe.br(A.F.D.S.C.)3 ICAM Tech School,Cat o lica o lica o lica de Pernambuco University(Unicap),Rua do do doprípe,n。 526, Boa Vista, Recife 50050-900, PE, Brazil 4 Communication Design Center, Acad Center of the Agreste Register, Federal University of Pernambuco (UFPE), Av Marielle Franco, S/N-Nova Caruaru, Caruaru 50670-900, PE, Brazil * Correspondence: leonie.sarubbo@unicap.br;电话。: +55-81-21194000