金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
通过滴脂糖甘油混合物(高达50 wt%甘油)溶解在三氟乙酸和三氟乙酸酸酐(TFA:TFA:TFAA:TFAA,2:1,2:1,V:V:v)中,获得了自由膜。进行了膜的光学,结构,机械,热力学,屏障,迁移,防油性和生物降解特征的全面检查。所得的纤维素 - 甘油混合物分别表现出无定形分子结构和增强的H键网络,分别通过X射线衍射分析和红外光谱证明。包含甘油对膜的机械性能产生了塑性影响,同时保持其透明度。通过水吸收和水蒸气/氧气传输速率评估流体动力和屏障性能,并且获得的值与其他基于纤维素的材料的值一致。此外,总体迁移水平低于欧盟的调节限制,如使用Tenax®作为干粮模拟剂所述。此外,这些生物塑料表现出良好的防油性性能,尤其是在高甘油含量的情况下,以及作为烘焙产品包装材料的潜力。通过测量海水中的生物氧需求,观察到甘油诱导的高生物降解率,进行了生物降解性评估。
粗粒(CG)力场参数是使用真空中纤维素Iβ的原子分子动力学模拟得出的(0%的水分含量),并使用Gromacs软件[5]和CHARMM力场进行的水(95%水分含量)溶剂(95%的水分含量)[6]。72使用自下而上的粗粒方法将葡萄糖残基映射到一个CG位置:在存在水存在下,使用雨伞采样确定了100个纤维素表面之间的非键相互作用,以计算平均力的潜力(PMF)。势能被视为真空模拟中PMF的近似值,因为缺乏水减少了对自由能的熵贡献。使用Boltzmann倒置参数化键合的相互作用,以从与CG位点相对应的原子组之间的键长和角度的概率分布来计算PMF。使用LAMMPS软件进行了粗粒纳米纤维素组件的MD模拟[7]。进行了机械应力MD模拟,以确定具有强力场参数的CG纳米纤维素组件的拉伸模量,其水分含量为0%和95%。
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
摘要 — 印度尼西亚是世界第二大椰子生产国,其产品之一是椰果,椰果由椰子水通过发酵工艺加工而成。椰果是生物纤维素的一种来源,可用作高级隔音材料的原料。本研究的目的是确定生物纤维素椰果的干燥工艺,以用于隔音的潜在应用,并通过测试水分含量和扫描电子显微镜 (SEM) 分析形成的纤维素纤维。干燥过程在 (95 -100) o C 的温度下进行。在干燥的前 10 分钟内,椰果中遗忘的水蒸气似乎几乎是总水分含量的 ± (30-40)%,即游离水。这是因为椰果样品中所含的游离水含量仍然很大且容易释放,而在干燥的最后阶段,蒸发水分需要很长时间,因为它是结合水。干燥一直进行到获得恒定质量。本研究中平衡含水量 (Me) 的值采用亨德森方程,计算得出的值为 16.430828706902。在干燥结果中发现,干燥产生的生物纤维素椰果含有少量水分,真菌生长的可能性越来越小,从形态学上看生物纤维素可以用作隔音材料,因为它有孔隙和凹痕来容纳传入的声能,因此隔音应用的潜力很大。关键词:椰果、生物纤维素、隔音、吸音系数。1. 引言印度尼西亚是世界上第二大椰子生产国,椰子种植面积为 388 万公顷,如果使用比例为 97%(小农庄园),椰子产量最多可达 320 万吨。 34 年来,椰子种植园从 1980 年的 166 万公顷增加到 2017 年的 389 万公顷(工业部,2010 年)。与斯里兰卡和印度相比,印尼的椰子生产力仍然较低。无论是出口还是国内市场,对椰子制品的需求都在持续增长。椰子衍生产业可以通过多样化加工产品来发展,包括椰果、椰干、初榨油、油脂化学品和椰干。椰果的主要产品除了作为出口材料外,还可以通过多样化椰果衍生产品来利用其他潜力。将椰果中所含的生物纤维素用于生物片材、生物纤维素面膜、生物纤维纸浆和生物纤维粉,为产品多样化和增加出口提供了机会。目前,有很多向发达国家出口生物片材产品、生物纤维素面膜、生物纤维纸浆和生物纤维粉的需求 [10]。生物纤维素是一种由微生物发酵椰子水产生的多糖。椰果或其他使用微生物木醋杆菌的材料,如果将其放入在受控过程中富含氮和碳的椰子水中,它将能够形成椰果纤维。在这种情况下,细菌会产生酶,可以将糖排列成纤维素纤维链。在椰子水中生长的众多微生物中,成千上万的
实验室位于生物产品和生物系统系内。生物产品和生物系统系 (Bio2) 是阿尔托大学化学工程学院的三个系之一,在利用自然资源开发先进材料的基础和应用研究方面享有国际领先声誉。它是欧洲领先的基于可再生资源利用的可持续化学和工程领域的研究和高等教育机构之一。Bio2 旨在为开发新颖的解决方案做出贡献,以实现可持续的初级生产和加工系统,从而可以生产出投入更少、对环境影响更小、温室气体排放更少的材料。在生物科学领域,该系开展生物过程技术、分子生物技术、酶技术、代谢工程、合成生物学、生物分子和生物混合材料的研究。该系的其他优势包括基于木质纤维素的可持续材料和产品,从纳米材料到新型纤维素基纺织品。
材料:动物细胞生物技术 - 国会干细胞 - 国会干细胞组织组织工程细胞系干细胞组织工程纤维素 - 生物技术 - 恭喜蜂窝套管 - 恭喜lignéesLignées纤维素纤维素纤维素纤维化纤维素souches souchesgénietissulaire science-化学 - 工业和技术。技术与工程 - 化学与生化。组织工程。细胞系。动物细胞生物技术。干细胞。
对温度和食物资源的适应是土壤动物(尤其是冷血动物)在其栖息地生存的两种主要适应策略,而肠道菌群会影响这些适应策略。蚯蚓通常被称为生态系统工程师,因为它们是土壤中动物生物量的最大组成部分。它们被视为土壤质量、健康和功能三角中的重要指标。然而,肠道菌群在蚯蚓大规模环境适应中的作用仍不清楚。我们探讨了中国东北(1661 公里)两种广泛分布的蚯蚓(Eisenia nordenskioldi Eisen 和 Drawida ghilarovi Gates)的肠道细菌群落及其在环境适应中的作用。根据我们的研究结果,肠道细菌群落的 α 多样性随着纬度的增加而降低,肠道细菌群落组成受年平均温度(MAT)和
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
菠萝以其美味的味道和营养价值而闻名,以核心,叶子和皮肤的形式产生大量废物,从而导致每年大量的积累。由于其生产的增加和潜在的环境污染,菠萝废物的有效处理已成为一个关键的挑战。本文的目的是通过将菠萝废料衍生成新的介电复合材料来挥发自然纤维。通过使用设计专家软件的优化技术实现了介电复合材料的制造过程,从而导致了值得注意的发现。然后,根据其介电性值和元素组成分析了制造材料的特性。使用矢量网络分析仪(VNA)方法测量新制造的介电材料的介电常数,而其元素组成是使用能量分散性X射线(EDX)光谱进行表征的。在本文中分析了元素组成与新制造的复合材料的介电值之间的相关性。结果,当介电复合材料由76.02%碳和22.61%的氧气组成时,获得了最高的介电常数(4.08)。相反,当材料碳含量降低到69.32%,其氧含量增加到29.81%时,该材料表现出较低的介电率值(2.87)。这种结果强调了碳在吸收和存储电磁信号中的关键作用,从而影响了材料的介电特性。总而言之,本文揭示了用于废菠萝叶的开创性用途,展示了它们的碳含量如何显着影响所得的介电复合材料的介电特性。例如,这种创新的环保材料为电子设备(例如PCB,天线和传感器)中不可回收的介电材料提供了可持续的替代方案。