解决现实世界的优化问题时,当无法获得分析性的功能或约束时,特别具有挑战性。虽然许多研究已经解决了未知目标的问题,但在没有明确给出可行性约束的情况下进行了有限的研究。忽略这些概念可能会导致虚假的解决方案,这些解决方案在实践中是不现实的。要处理这种未知的约束,我们建议使用扩散模型在数据歧管中执行优化。为了将优化过程限制为数据歧管,我们将原始优化问题重新制定为从目标函数定义的Boltzmann分布的乘积和扩散模型学到的数据分布中的采样问题。为了提高Sampor的效率,我们提出了一个两阶段的框架,该框架从引导的扩散过程开始进行热身,然后是Langevin动力学阶段,以进行进一步校正。理论分析表明,初始阶段会导致针对可行解决方案的分布,从而为后期提供了更好的初始化。在合成数据集,六个现实世界的黑框优化数据集和多目标优化数据集上进行的综合实验表明,我们的方法具有以前的先前最先进的盆地,可以更好地或可比性的性能。
2.3 运行约束 储能电站的规划与运行决策存在强耦合关 系。在不同位置接入储能电站将对系统运行的安 全性、经济性与可靠性造成不同影响。为了支持网 侧储能选址定容方案的科学决策,需充分考虑储能 充放电特性、有功 / 无功综合潮流、电压偏移限制、供 电可靠性要求等关键因素,进行精细化的运行建 模。故引入运行约束如下。 2.3.1 功率平衡约束
许多现实世界的优化问题,尤其是工程优化问题,都涉及约束条件,这使得寻找可行解变得十分困难。许多研究人员已经针对受约束的单目标和多目标优化问题研究了这一挑战。具体而言,本研究扩展了 Gandomi 和 Deb(《计算机方法与应用机械工程》363:112917, 2020)提出的用于约束优化问题的边界更新 (BU) 方法。BU 是一种隐式约束处理技术,旨在通过迭代削减不可行搜索空间,从而更快地找到可行区域。这样做会扭曲搜索空间,使优化问题更具挑战性。为此,我们实施了两种切换机制,当找到可行区域时,将景观连同变量一起转换为原始问题。为了实现这一目标,我们考虑了两个阈值,分别代表不同的切换方法。在第一种方法中,当约束违规达到零时,优化过程将转换为不使用 BU 方法的状态。在第二种方法中,当目标空间不再发生变化时,优化过程将转入不使用 BU 方法的优化阶段。为了验证该方法的有效性,我们考虑使用著名的进化单目标和多目标优化算法来解决基准测试和工程问题。本文分别在整个搜索过程中使用和不使用 BU 方法对所提出的方法进行了基准测试。结果表明,该方法可以显著提高收敛速度,并能够更好地解决约束优化问题。
1有趣的是,与Budyko的论文同时,Larry Niven的经典科幻小说Ringworld(1970)也承认废热是技术物种的进化因素的重要性[Niven,1970年]。2在属于高工业化(例如,大而茂密的城市)的本地化区域中,它已经是变暖的重要贡献[Ichinose et al。,1999; Block等,2004; Ohashi等,2007年,2007年,2007年,Allen等,Allen等,2011; Zhang et al。,Zhang et al。和Kennedy,2017年,Sun等,2018; Raj等,2020; Moln´ar等,2020],预计将来这种影响会增加。
•通常,不合格(NC)约束和单位坡道率约束之间没有冲突,因为NC约束将单位/互连设置为其初始MW和坡道速率围绕初始MW绑定。但是,如果具有零maxavail和零目标的快速启动单元在非零级别生成,则触发NC约束以将单元设置为其initialMW。同时,由于Maxavail零Maxavail和Pass 1中的非零目标,快速启动单元被重新命令(每个DI),忽略了FS不稳定的配置文件。NC约束因CVP(现有)较低而违反了单位坡道速率约束和Maxavail约束的CVP总和。选择当前的CVP值以确保在这种情况下不会违反NC约束。
我们在低温下研究了玻色粒量子东模型的动力学特性。我们表明,相应的自旋-1/2量子东模型的幼稚概括没有类似的慢速动力学特性。特别是,与自旋案例相反,骨基底态被证明不是本地化的。我们通过引入排斥相互作用项来恢复本地化。该模型的骨气性使我们能够建立多体局部状态的丰富家族,包括连贯,挤压和猫州。我们通过引入一组满足玻色子换向关系的超级体验创造 - 宣传操作系统来形式化这一发现,并在对真空作用时,会产生刺激性,这些激发被指数定位于某个lattice的某个地点。鉴于模型的约束性质,这些状态长期保留其初始条件的记忆。即使在存在耗散的情况下,我们也表明,量子信息仍位于与系统参数可调节的变质时间内。我们提出了基于最先进的超导电路的Bosonic Quantum East模型的实现,该电路可在不久的将来使用,以探索现代平台中动力学约束模型的动态性能。
AST月,OpenAI首席执行官Sam Altman终于承认了研究人员多年来一直在说的话 - 人工智能(AI)行业正处于能源危机的方面。这是一个不可接受的入学。在世界经济论坛在瑞士达沃斯举行的年度会议上,奥特曼警告说,下一波生成的AI系统将消耗的力量要比预期的要大得多,并且能源系统将难以应付。“没有突破就无法到达那里,”他说。我很高兴他说了。自从我从2018年开始发布有关AI行业的环境成本以来,我已经看到一贯的低调和否认。Altman的承认使研究人员,监管机构和行业巨人谈论了生成AI的环境影响。那么,Altman Banking启动了什么能源突破?不是更可持续的AI系统的设计和部署,而是核融合。他在那场比赛中也有皮肤:2021年,阿尔特曼(Altman)开始投资华盛顿埃弗里特(Everett)的Fusion Company Helion Energy。大多数专家都同意,核融合不会显着构成在本世纪中叶脱碳以应对气候危机的关键目标。Helion最乐观的估计是,到2029年,它将产生足够的能量,为40,000个平均美国家庭供电;一项评估表明,由OpenAI在加利福尼亚州旧金山创建的聊天机器人Chatgpt已经消耗了33,000户房屋的能源。据估计,由生成AI驱动的搜索使用了传统网络搜索能量的四到五倍。,这不仅仅是能量。在几年内,大型AI系统可能需要与整个国家一样多的能量。生成的AI系统需要大量的淡水来冷却其处理器并发电。在爱荷华州西得梅因市,一个巨大的数据中心集群为OpenAI最先进的型号GPT-4提供。当地居民的诉讼显示,2022年7月,即Openai完成了培训模型的一个月,该集群使用了该地区约6%的水。根据公司的环境报告,当Google和Microsoft准备了大型语言模型时,两者都在用水方面有很大的峰值 - 在一年内分别增加了20%和34%。一个预印本1表明,在全球范围内,对AI的水需求可能是2027年的一半。在另外2个中,Facebook AI研究人员称工业的环境影响是追求规模的“房间里的大象”。而不是管道梦,我们需要务实的
[1] Jimmy Lei BA,Jamie Ryan Kiros和Geoffrey E. Hinton。层归一化。2016。Arxiv:1607.06450 [Stat.ml]。[2] Nanxin Chen等。Wavegrad:估计波形产生的梯度。2020。Arxiv:2009.00713 [Eess.as]。[3]凯瑟琳·克罗森(Katherine Crowson)。在CIFAR-10上训练扩散模型。在线。2024。URL:https://colab.research.google.com/drive/1ijkrrv-d7bosclvkhi7t5docryqortm3。[4]凯瑟琳·克罗森(Katherine Crowson)。v-diffusion。在线。2024。URL:https: / / github。com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py。[5] Ekin D. Cubuk等。randaugment:实用的自动化数据增强,并减少了搜索空间。2019。Arxiv:1909.13719 [CS.CV]。 [6] Yann N. Dauphin等。 通过封闭式卷积网络进行语言建模。 2017。Arxiv:1612.08083 [CS.CL]。 [7] Mostafa Dehghani等。 通用变压器。 2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1909.13719 [CS.CV]。[6] Yann N. Dauphin等。通过封闭式卷积网络进行语言建模。2017。Arxiv:1612.08083 [CS.CL]。[7] Mostafa Dehghani等。通用变压器。2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1807.03819 [CS.CL]。[8] Yilun Du和Igor Mordatch。基于能量的模型中的隐性产生和概括。2020。Arxiv:1903.08689 [CS.LG]。[9] Ian J. Goodfellow等。生成对抗网络。2014。Arxiv:1406.2661 [Stat.ml]。[10] Dan Hendrycks和Kevin Gimpel。高斯错误线性单元(Gelus)。2023。Arxiv:1606.08415 [CS.LG]。[11] Jonathan Ho,Ajay Jain和Pieter Abbeel。剥离扩散概率模型。2020。Arxiv:2006.11239 [CS.LG]。[12] Jonathan Ho和Tim Salimans。无分类器扩散指南。2022。ARXIV:2207.12598 [CS.LG]。[13]安德鲁·霍华德(Andrew Howard)等人。搜索MobilenetV3。2019。Arxiv:1905.02244 [CS.CV]。[14] Andrew G. Howard等。 Mobilenets:用于移动视觉应用的有效卷积神经网络。 2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。[14] Andrew G. Howard等。Mobilenets:用于移动视觉应用的有效卷积神经网络。2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。2017。Arxiv:1704.04861 [CS.CV]。[15] Forrest N. Iandola等。squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。2016。Arxiv:1602.07360 [CS.CV]。[16] Imagenet 64x64基准(图像生成)。用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。[17] Sergey Ioffe和Christian Szegedy。批次归一化:通过减少内部协变性转移来加速深层网络训练。2015。Arxiv:1502.03167 [CS.LG]。[18] Diederik P. Kingma和Jimmy Ba。亚当:一种随机优化的方法。2017。Arxiv:1412.6980 [CS.LG]。[19] Diederik P. Kingma和Ruiqi Gao。将扩散目标理解为具有简单数据增强的ELBO。2023。Arxiv:2303.00848 [CS.LG]。[20] Diederik P. Kingma等。变化扩散模型。2023。Arxiv:2107.00630 [CS.LG]。[21] Zhenzhong Lan等。albert:一个精简版的语言表示学习。2020。Arxiv:1909.11942 [CS.CL]。[22] Ilya Loshchilov和Frank Hutter。重量衰减正则化。2019。Arxiv:1711.05101 [CS.LG]。[23] Preetum Nakkiran等。深度下降:更大的模型和更多数据损害。2019。Arxiv:1912.02292 [CS.LG]。[24] Alex Nichol和Prafulla Dhariwal。改进了扩散概率模型。2021。Arxiv:2102.09672 [CS.LG]。[25] Aaron van den Oord,Nal Kalchbrenner和Koray Kavukcuoglu。像素复发性神经网络。2016。Arxiv:1601.06759 [CS.CV]。[26] Prajit Ramachandran,Barret Zoph和Quoc V. Le。搜索激活功能。2017。Arxiv:1710.05941 [CS.NE]。 [27] Danilo Jimenez Rezende和Shakir Mohamed。 差异推断与归一化流量。 2016。Arxiv:1505.05770 [Stat.ml]。2017。Arxiv:1710.05941 [CS.NE]。[27] Danilo Jimenez Rezende和Shakir Mohamed。差异推断与归一化流量。2016。Arxiv:1505.05770 [Stat.ml]。