离线增强学习(RL)旨在根据历史数据改善目标政策而不是行为政策。离线RL的一个主要问题是分配转移导致Q值估计的分布转移。大多数现有的作品都集中在行为克隆(BC)或最大化Q学习方法以抑制分布转移。BC方法试图通过将目标策略限制为离线数据来减轻转移,但它使学习的策略高度保守。另一方面,最大化Q学习方法采用悲观的机制来通过根据动作的不确定性来最大化Q值和惩罚Q值来产生动作。但是,生成的措施可能是算法的,从而导致预测的Q值高度不确定,这反过来又将误导该策略以生成下一个动作。为了减轻分配转移的不利影响,我们建议通过统一Q学习和行为克隆以应对探索和剥削难题来隐含和明确地限制政策。对于隐式约束方法,我们建议通过致力于使目标策略和行为策略的行动无法区分的生成对抗网络统一行动空间。对于显式约束方法,我们会提出多重重要性采样(MIS),以了解每个状态行动对的优势权重,然后将其用于抑制或充分使用每个状态行动对。D4RL数据集上的广泛实验表明,我们的方法可以实现出色的性能。MAZE2D数据上的结果表明,MIS与单个重要性采样更好地解决了异质数据。我们还发现MIS可以有效地稳定奖励曲线。关键字:Q学习,行为克隆,悲观机制,多重重要性采样。
摘要。量子计算可能表明其使用的第一个字段之一是优化。自然出现了许多优化问题,例如二次背带问题。量子计算机的当前状态要求将这些问题置于二次无约束的二进制优化问题或QUBO。受约束的二进制优化可以通过翻译约束来转换为Qubos。但是,这种翻译可以通过几种方式进行,这在求解Qubo时可能会对穿孔产生很大的影响。我们为二次背包问题展示了六种不同的配方,并使用模拟退火比较其性能。最佳性能是通过不使用不使用辅助变量来建模不平等约束的公式获得的。
行为源自多个在解剖学和功能上不同的大脑区域的协调活动 1,2 。现代实验工具 3–5 使我们能够前所未有地接触大量神经群,甚至是横跨全脑许多相互作用区域的神经群 2 。然而,要理解如此大规模的数据集,不仅需要稳健、可扩展的计算模型来提取区域间通信的有意义特征,还需要原则性理论来解释这些特征。在这里,我们介绍了基于电流的分解 (CURBD),这是一种使用数据约束的循环神经网络模型 6 推断全脑相互作用的方法,该模型一旦经过训练,就会自主产生与实验获得的神经数据一致的动态。CURBD 利用从这些模型推断出的功能相互作用来同时揭示多个大脑区域之间的定向电流。我们首先表明,CURBD 可以在具有已知连接和动态的模拟真实网络中准确地隔离区域间电流。然后,我们将 CURBD 应用于从广泛的神经数据集(斑马鱼幼虫 7 、小鼠 8 、猕猴 9 和人类 10 )获得的多区域神经记录,以证明 CURBD 在解开全脑相互作用和行为背后的区域间通信原理方面的广泛适用性。
菲律宾于1980年在菲律宾菲律宾大学(UPLB)的国家分子生物学和生物技术学院(Biotech)正式创建其生物技术研究。在1995年,菲律宾系统中建立了其他三个生物技术学院。他们位于UP Diliman校园中,专注于工业生物技术,UP Manila专注于人类健康生物技术,以及UP Visayas专注于海洋生物技术。UPLosBaños的生物技术研究所继续在农业,林业,工业和环境生物技术学方面提供领导地位。UPLB的其他研究机构也正在进行生物技术研究。包括植物育种研究所,生物科学研究所,动物科学研究所,食品科学技术知名人士以及林业与自然资源学院。外部UPLB,其他研究机构和中心,例如菲律宾稻米研究所,菲律宾椰子管理局,棉花研发研究所,工厂内工业局,动物行业局和
异国情调的自由度,例如超子,暗物质和脱糊状的夸克物质,在紧凑型物体(如中子恒星)的理论模型中引起了显着的关注,如中子恒星,这些恒星具有极高的密集核心。我们的目标是在高密度环境中探索这些颗粒的形成,同时保持中子恒星的稳定性并满足中子恒星的观察性约束。我们采用相对论密度的功能方法,用于辐射阶段,并结合了超子和玻色子暗物质,通过相过渡到非本地nambu - jona-lasinio模型与颜色超导性描述。我们评估了模型与观察数据的兼容性,并使用贝叶斯分析来限制其参数。
这就是特征优化如此至关重要的原因。添加的外围设备与设备的模具和成本的大小直接相关。未利用的功能可能浪费了空间和金钱,并降低了空间约束设计的效率。了解市场的真实需求可能会导致成本和尺寸竞争力的嵌入式解决方案。例如,MSPM0C1104 8球WCSP不仅很小,而且具有许多集成的功能和组件。在1.38毫米2个软件包中,它提供了16kb的闪存,一个带有三个通道和三个计时器的12位ADC。工程师可以使用MSPM0C1104等设备来优化每平方毫米的功能数量,从而可以在设计方面做更多的空间。
摘要环境温度决定了poikilothermic动物的发育速度,但尚不清楚这是否对脑线接线和Func+ON有后果。在视觉系统中,果蝇温度尺度的突触+c连接+vity,但是这种缩放的基本原因,跨神经回路的缩放性的一般性以及func+onal inal ninca+for行为的含量尚不清楚。在这里,我们结合了解剖学,Func+Onal和Theore+Cal方法,以洞悉依赖温度依赖的突触+C缩放的性质和后果。我们表明,突触+c缩放会导致不同的弹性亚电路中的异质弹性+效果,对气味驱动的行为产生了巨大的后果。第一个原则模型对神经系统和生物体的发展施加了不同的代谢约束,解释了这些发现,并概括以预测在生态相关的温度周期下的大脑布线。我们的数据认为,代谢约束决定了神经子电路内突触+c缩放的程度,并且在Synap+C合作伙伴的可用性时,Resul+ng电路架构和func+on con+ngent是con+ngent。突触+C缩放与合作伙伴的可用性之间的这种复杂相互作用强调了温度依赖性发育率+城市对poikilothermothermic动物行为的复杂影响。
摘要:一种评估虚假决策的贝叶斯多元方法,是针对物质或材料的化学成分一致性而造成的,这是由于测量不确定性所致,该案例适用于该组合物受到质量平衡约束的情况。约束意味着,合格评估中组成部分内容的实际(“真”)值等于1(或100%)或其他正值小于1(小于100%)。因此,组件内容的实际值本质上相关。组件内容的相应测量值也相关。任何相关性都会影响对物质或材料化学组成的一致性评估中错误决策风险的评估。通过考虑所有观察到的相关性,讨论了一种用于适当评估相关风险的技术,包括评估受试者或材料组成的一致性概率或材料组成的概率。在R-gramming语言中应用了一种蒙特卡洛方法,以进行必要的计算。提供了风险评估的示例,以评估铂 - rhodium合金,纯三重氧化钾,香肠和合成空气的化学成分。
细胞是所有生命物质的基本单位,利用能量流动的流动来推动生命的过程。虽然参与能量转导的生化网络是充分表征的,但特定细胞过程的能量成本和限制仍然在很大程度上未知。特别是细胞的能源预算是多少?哪些约束和限制能量流对蜂窝过程施加?细胞在这些极限附近工作,如果是这样,能量约束如何影响细胞功能?物理学提供了许多工具来研究非平衡系统并定义物理极限,但是将这些工具应用于细胞生物学仍然是一个挑战。物理生物能源术,它位于非平衡物理学,能量代谢和细胞生物学的界面,试图了解能量细胞的使用量,它们如何在不同的细胞过程中分配这种能量,以及相关的能量约束。在这里,我们回顾了最新进展,并讨论了物理生物能学中的开放问题和挑战。
fi g u r e 3绵羊和山羊之间的相对差异,用于外围基因组区域(∆GR)的数量(∆GR)和XP-CLR/ F ST(∆GX)和SAMßADA(∆GS)检测到的基因。这三个索引被计算为绵羊和山羊中的区域/基因数量除以区域/基因的总数。它们在-1和 + 1之间变化:仅在山羊或绵羊中与环境参数相关的区域/基因。有关环境参数的代码,请参见表2。由于环境变量在每个物种上都不同(χ2测试,df = 9,p <.001),基因组区域和基因的数量在选择性下被选择。有关基因列表,请参见表S3。