获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 为了改进汽车乘员约束系统的设计方法,需要减少仿真的计算量,提高全局搜索能力,研究和整合分析方法来理解设计变量和目标函数之间复杂的相互作用。因此,在本研究中,我们整合了以下三种人工智能技术并将其应用于汽车乘员约束系统的设计:(1)通过机器学习构建高精度近似模型,(2)通过进化多目标优化提高全局搜索能力,(3)利用多元分析方法对多维信息进行可视化和知识获取。首先,我们使用带有试验设计的碰撞分析模型来获得最少的实际计算样本数,然后利用这些样本利用机器学习构建高精度近似模型。接着利用近似模型通过进化多目标优化在设计空间中进行全局搜索,得到考虑目标函数之间权衡关系的Pareto解集。最后利用聚类分析和自组织映射对Pareto解集进行多元分析。最终用高精度近似模型替代进化多目标优化的评估计算,实现了快速全局搜索。关键词:聚类分析、进化计算、机器学习、多目标优化、自组织映射、车辆乘员约束系统。然后利用聚类分析将其中获得的帕累托解集划分为各个聚类,再利用自组织映射对划分后的聚类进行分析,从而提供有关控制目标函数之间权衡以及设计变量之间相互作用的因素的感知信息,有助于设计工程师的洞察。