对于超大的约瑟夫森连接,当量子效应变得重要时,已经预测了异常相变(DPT)[1]。这种过渡的物理起源是通过与耗散量子力学环境的相互作用来抑制该相的宏观量子隧穿。宏观量子隧道破坏了连接的超导性,而隧道的抑制会恢复超导性。因此,这种过渡通常称为超导体 - 绝缘体过渡(SIT)。sit是针对各种系统的,但是在单个约瑟夫森交界处的检测至关重要,因为它是预期这种过渡的最简单系统,而没有任何其他物理过程掩盖的风险,而在常规或随机的Josephson Junction阵列(如常规或随机的)系统中可能是可能的。在这封信中,我们介绍了我们对R = DV / DL与 /曲线的测量结果,对于各种单个小型隔离的Josephson连接,分流和未分离,具有不同的电容C和正常状态隧道阻力RT的值,我们已经检测到了两种类型的RL-Curves之间的跨界频率,这些RL-Curves具有与本质上的小型cortents syly Cortersents sybles conterents sybles conterents。根据此交叉,我们能够为约瑟夫森连接的整个相图映射[2]。观察到的相边界的位置与原始理论的预期不一致。但是,该理论要考虑到我们的电压测量值的有限准确性(即我们能够检测到的最小电压),很好地解释了观察到的相图。因此,任何DPT都是坐的,但反之亦然。我们的重要结论是,耗散相变(DPT)和超导体 - 绝缘体转变(SIT)的概念并不完全与以前相同。两者都伴随着热度的符号变化,传统上被认为是SIT的签名。我们认为,DPT的真实特征是我们实验中观察到的VI曲线的修改。我们的工作是在约瑟夫森相位临界的单一约瑟夫森(Josephson)中的量子效应的强烈证明和相位运动的带图。
Martina Trahs,Larissa Melikek,Jacob F. Steinen Tammena,Nils Bogs,Nils Bagram Gamed,Kixtix Vend,Casharina Frank
SDE扩展的最有希望的平台之一是基于拓扑绝缘体的二极管[1]。Ti的表面提供了强的自旋轨道耦合(SOC),这使得有可能证明具有实质性的磁电效应[2]。已经向基于Ti的Josephson连接处的磁电效应支付了特殊的注意,在那里它以异常的基态相移的形式揭示了自己[3,4]。最近,已经证明,在Ti杂种结构中,在空间分离超导性和铁磁性的结构中,也对基态进行了修改[5,6]。在这种情况下,基态对应于空间不均匀的超导顺序参数。这种超导状态通常称为螺旋状态[7]。超导螺旋状态成为实现SDE的选择之一[8]。由有限的库珀对动量描述,螺旋状态可以在反转和时间反向对称性的系统中进行实现。前者与哈密顿式的SOC术语的出现相连,而后者可以由磁场引入。在这种情况下,库珀对动量的方向取决于磁场的方向。库珀对的有限含量,锁定在磁场的方向上,导致各种系统中的非偏置下降电流。在这里,我们讨论了Ti表面状态在S/TI/S系统中使用平面内Zeeman字段中的Josephson Critistal Crister和非转流运输的六角形翘曲的后果。在基于TI的设备中,六角形翘曲的影响很重要,因为它可以显着改变某些运输特性。例如,众所周知,由于费米表面的变形,在缺陷附近的伴侣效应得到了强烈增强[9]。翘曲术语也导致自旋的各向异性
2.6约瑟夫森(Josephson)的小约瑟夫森(Josephson)当前分布,用于各种应用磁场。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56
2cm 10 V 约瑟夫森电压标准芯片。光刻技术和材料的持续改进提高了这些具有大量结点的电路的产量 [11]。例如,IBM 的约瑟夫森计算机项目导致了结氧化物屏障和 PbInAu 超导电极的改进 [12]。由于 Pb 合金结会随着热循环而发生变化,因此人们开始努力开发一种全耐火结工艺,使用铌作为结电极和布线。然而,事实证明氧化铌是一种较差的结屏障,只能产生中等质量的结。下一个重大改进发生在贝尔实验室的 Gurvitch 等人 [13] 发现热生长的氧化铝屏障非常稳定时,从而产生了第一个具有出色均匀性的高质量约瑟夫森结。多年来,这种全耐火
我们从理论上研究了三端约瑟夫森连接中的超导二极管效应。超导系统中的二极管效应通常与在相反方向流动的电流的临界电流存在差异有关。我们表明,在多末端系统中,这种效果自然发生,而无需任何自旋相互作用,这是由于携带超恒星的Andreev结合状态之间存在相对移位的结果。在一个三末端交界处的示例中,我们证明了一个超导接触中的非重点电流可以通过对其他触点的适当相位偏置来诱导,前提是系统中至少有两个Andreev绑定状态,并且系统的对称性被打破。在描述短期和长时间连接的数值模型中证实了此结果。通过优化连接点的几何形状,我们表明已实现的超导二极管的效率超过35%。我们将预测与对多末端连接的最新实验相关联,在该实验中,观察到非相互超电流。
超导二极管效应(SDE)是一种磁电现象,其中外部磁场将非零的质量中心动量赋予库珀对,以促进或阻碍根据其方向促进超级电流的流动。我们提出,基于量子的自旋霍尔绝缘子(QSHI)的约瑟夫森连接器可以用作非隔离电子设备的多功能平台,当通过相位偏置和非平面磁场触发时,该平台表现出SDE。通过计算Andreev结合状态和准颗粒状态的连续体的贡献,我们提供了数值和分析结果,审查了SDE的各个方面,包括其质量Q因子。发现Q因子的最大值在低(零)温度下是通用的,它的起源与独立于交界处的特定细节的潜在拓扑特性相关。随着磁场的增加,由于轨道效应引起的诱导超导间隙的关闭,SDE减小了。要观察SDE,必须设计基于QSHI的Josephson结,以使其边缘具有不务件的运输。此外,我们在一个更具异国情调但现实的场景中探索了SDE,在驱动电流时,约瑟夫森交界处的典型地面态奇偶校仍然保守。在这种4π的周期情况下,我们预测SDE的增强是与其2π-周期性的,平等无限的对应物相比的增强。
本论文研究基于近端 InAs/Al 纳米线的超导量子比特。这些量子比特由半导体约瑟夫森结组成,并呈现了 transmon 量子比特的门可调导数。除了门控特性之外,这个新量子比特(gatemon)还根据操作方式表现出完全不同的特性,这是本论文的主要重点。首先,系统地研究了 gatemon 的非谐性。在这里,我们观察到与传统 transmon 结果的偏差。为了解释这一点,我们推导出一个简单的模型,该模型提供了有关半导体约瑟夫森结传输特性的信息。最后,我们发现该结主要由 1-3 个传导通道组成,其中至少一个通道的传输概率达到大于 0.9 的某些门电压,这与描述传统 transmon 结的正弦能量相位关系形成鲜明对比。接下来,我们介绍了一种新的门控设计,其中半导体区域作为场效应晶体管运行,以允许通过门控设备进行传输,而无需引入新的主导弛豫源。此外,我们展示了传输和过渡电路量子电动力学量子比特测量之间的明显相关性。在这种几何结构中,对于某些栅极电压,我们在传输和量子比特测量中都观察到量子比特谱中的共振特征。在共振过程中,我们仔细绘制了电荷弥散图,在共振时,电荷弥散显示出明显抑制的数量级,超出了传统的预期。我们通过几乎完美传输的传导通道来解释这一点,该通道重新规范了超导岛的电荷。这与开发的共振隧穿模型在数量上一致,其中大传输是通过具有近乎对称的隧道屏障的共振水平实现的。最后,我们展示了与大磁场和破坏性 Little-Parks 机制中的操作的兼容性。当我们进入振荡量子比特谱的第一叶时,我们观察到出现了额外的相干能量跃迁。我们将其解释为安德烈夫态之间的跃迁,由于与 Little-Parks 效应相关的相位扭曲,安德烈夫态在约瑟夫森结上经历了路径相关的相位差。这些观察结果与数值结模型定性一致。
引言。目前,人们对拓扑非平凡系统中的凝聚态物理学有着浓厚的兴趣。在过去的二十年里,人们做出了巨大的努力来寻找新型拓扑量子物质,如拓扑绝缘体[1,2]、拓扑半金属[3]或拓扑超导体[4]。拓扑相通常与两个能带相交的能带结构中的孤立奇点有关[5,6]。在拓扑超导体的情况下,零能量的Bogoliubov准粒子(称为Majorana零模式)可用于拓扑保护的量子计算[4]。此类系统中零能量模式的存在受到拓扑保护[7],最近已在超导三端结实验中得到证实[8]。实际上,超导弱链接中的安德烈夫束缚态 (ABS)(也称为约瑟夫森结)也被提议用于实现量子比特 [9,10]。如果将结嵌入射频超导量子干涉装置 (SQUID),则可以轻松调整 ABS,并且可以通过微波 [11 – 14]、隧穿 [15] 和超电流谱 [16] 进行实验访问和相干操控。最近,据预测,由传统超导体制成的多端约瑟夫森结 (MJJ) 将表现出四 [17 – 22] 和三 [23 – 27] 引线的非平凡拓扑。在这样的系统中,不需要奇异的拓扑材料,尽管多端拓扑纳米线也已被讨论过 [27]。在 MJJ 中,两个终端之间的量化跨导是整数值陈数的表现形式 [17,20,21,27]。或者,弗洛凯在周期驱动的约瑟夫森系统中陈述,其连通性比
硅量子器件中的自旋是大规模量子计算的有希望的候选对象。基于门的自旋量子比特传感提供了具有高保真度的紧凑且可扩展的读出,但是,需要进一步提高灵敏度以满足保真度阈值和实现纠错协议中的快速反馈所需的测量时间尺度。在这里,我们将 622 MHz 的射频门控传感与在 500 – 800 MHz 频段工作的约瑟夫森参数放大器相结合,以减少读取纳米线晶体管中形成的硅双量子点状态所需的积分时间。根据我们实现的信噪比,我们估计平均保真度为 99.7% 的单重态-三重态单次读出可以在 1 μ s 内完成,远低于容错读出的要求,比不使用约瑟夫森参数放大器快 30 倍。此外,约瑟夫森参数放大器允许在较低的射频功率下运行,同时保持相同的信噪比。我们确定噪声温度为 200 mK,其中约瑟夫森参量放大器(25%)、低温放大器(25%)和谐振器(50%)的贡献,显示出进一步提高读出速度的途径。