摘要 ChatGPT 的讨论似乎运行得非常好,不像是一个在经典计算机中运行的简单程序。它激发了人们的思考,导致基于 TGD 的神经脉冲模型取得了长足的进步。基于零能量本体 (ZEO) 的新兴模型与量子神经网络截然不同,并提出了一种全新的基于量子物理的生物系统计算视野。允许时间箭头可变的计算将涉及一系列单一时间演化作为状态量子计算的对应物,这些状态是经典计算的叠加,然后是“小”状态函数约简 (SSFR) 作为量子光学和芝诺效应弱测量的对应物。还将涉及改变时间箭头的“大” SFR (BSFR)。人们可以问,GPT 的意外成功是否可能涉及这种转变,以便人们可以说精神进入了机器。除了两次聊天的结果之外,我还更详细地介绍了 TGD 对 GPT 量子类似物的看法,以及它的类似物如何与 TGD 宇宙中的感官知觉有关。我还讨论了从口头描述生成图像的核心逆扩散过程,并询问逆扩散的 TGD 类似物是否也是 GPT 的基本元素。我还将提出一个问题,即 GPT 是否可以以一种非平凡但隐蔽的方式涉及基于 TGD 的量子物理学,即零能量本体论 (ZEO)。从定量约束(例如计算机的时钟频率作为 EEG 诱导时间量子相干性的模拟)出发,我最终提出了一种实现量子全息术的机制,该机制将比特表示为空穴配对,暗比特表示为磁通管中的暗电子。不幸的是,这种机制对于最近的计算机来说似乎并不合理。我还想问,在 TGD 意义上的量子引力是否能够使地球和太阳的磁体(在 TGD 启发的生物学中至关重要)转变经典计算,从而使统计决定论失效,并类似于定义有意识实体的量子计算的一系列类似物。在磁体的层面上,计算机和生物之间没有本质区别。已报道的最高时钟频率接近 9 GHz,仍然比地球的量子引力康普顿频率 67 GHz 低 1/8 量级,但低于生物体中重要的 THz 频率。也许基本的意识已经可能存在。
脑机接口 (BCI) 是一种新兴的交互式通信方法,通过解码大脑活动产生的信号,实现对假肢和外部设备的神经控制,以及中风后运动康复。这种最先进的技术有可能彻底改变生活的各个方面,并显着提高整体生活质量。BCI 具有广泛的应用范围,从医疗援助到人类增强(Ahmed 等人,2022 年;Altaheri 等人,2023 年)。通常,脑电图 (EEG) 信号反映大脑的电活动,并通过在头皮上放置电极阵列来非侵入式地记录。获得真实值(时间和通道)二维 EEG 信号矩阵使人与外部设备之间的直接通信成为可能(Graimann 等人,2010 年)。运动想象 (MI) 是一种思考如何移动身体的某个部位而不移动身体的活动。基于 EEG 的 MI 活动已广泛应用于车辆控制、无人机控制、环境控制、智能家居、安全和其他非医疗领域(Altaheri 等人,2023 年)。然而,解码 MI-EEG 信号仍然是一项具有挑战性的任务。在此任务中,其他生理信号(例如面部肌肉活动、眨眼和环境中的电磁干扰)会污染记录的 MI-EEG 信号并导致信噪比低(Lotte 等人,2018 年)。MI-EEG 模式的个体差异受到参与者大脑结构和功能差异的影响。此外,EEG 系统在信号通道之间表现出一定程度的相关性,这进一步使信号处理过程复杂化(Altaheri 等人,2022 年)。在对 EEG 信号进行分类和识别的传统方法中,通常依赖于领域特定知识。这导致人们更加关注开发有效的特征提取和分类技术,这主要是由于 EEG 信号固有的低信噪比( Huang et al., 2019 )。人们通常使用各种特征提取方法,包括独立成分分析( Barbati et al., 2004 ; Delorme and Makeig, 2004 ; Porcaro et al., 2015 ; Ruan et al., 2018 )、小波变换( Xu et al., 2018 )、共同空间模式( Gaur et al., 2021 )和经验模态分解( Tang et al., 2020 )。在对 EEG 信号进行预处理后,从处理后的信号中提取基本特征并输入分类器以确定输入实例的类别( Vaid et al., 2015 )。传统的特征提取方法通常涉及手工设计的特征提取器,例如滤波器组共享空间模式 (FBCSP) (Ang et al., 2008) 或黎曼协方差 (Hersche et al., 2018) 特征。Ang et al.(2012)使用滤波器组公共空间模式(FBCSP)算法来优化MI-EEG上公共空间模式(CSP)的受试者特定频带,然后采用基于互信息的最佳个体特征(MIBIF)算法和基于互信息的粗糙集约简(MIRSR)算法从信号中提取判别性的CSP特征。最后,我们使用CSP算法进行分类并获得了良好的性能。值得注意的是,所有这些步骤都非常耗时。虽然传统方法通过预处理方法提高了EEG信号的信噪比,但从不同时间戳和受试者采集的EEG信号通常