上述结构可以扩展到更一般类型的奇点,例如具有分支切割结构。现在我们可以理解“复苏”这一名称的由来。我们已经看到,Borel 变换的奇点会导致新的幂级数。事实证明,当 k 很大时,这些新级数通过系数 ak 的行为在原始级数中“复苏”。就 Borel 变换(在原点处解析)而言,这本质上是 Darboux 的一个古老定理,它将解析函数系数在原点处的大阶行为与最接近奇点附近的行为联系起来(参见例如 [ 2 ])。让我们首先陈述结果。让 ϕ ( z ) 成为一个简单的复苏函数,如 ( 2.19 ) 中所示。假设 A 是复平面上最接近原点的 Borel 变换奇点(为简单起见,我们假设只有一个奇点,尽管推广很简单)。假设该奇点附近的行为如 (2.29) 所示,ζ ω = A 。为简单起见,我们假设 ξ = 0 处的留数为零,即 a = 0。然后,系数 ak 具有以下渐近行为,
I 学期 (AME 通用) 1.1 数学-I L T P 4 2 - 原理:数学是工程教育的支柱。它对于定量理解工程和技术概念是必不可少的。按主题划分的时间段分布 __________________________________________________________________ Sl.No.主题 覆盖时间 ______________________________________________________L___T___P___ 1.代数 15 8 - 2.三角学 15 8 - 3.微积分 26 10 - _________________________________________________________________ 总计 56 28 - _________________________________________________________________ 详细内容 1.代数: (i) 方程理论和根的对称函数。(ii) 二项式、对数和指数级数、一般指数和对数级数(修订版)。(iii) 复数及其在工程问题中的应用。(iv) 矢量及其图形表示 矢量的数学运算。(v) 矩阵和行列式(基本概念)。2.三角学:(i)逆圆函数。(ii) 德莫维尔定理及其应用。3.微分学:(i)求函数微分系数导数的方法。(ii) 函数的微分。(iii) 对数微分。(iv) 逐次微分。(v) 偏微分。(vi) 切线和法线结果的应用。(vii) 最大值和最小值
经验:20 多年在企业(财富 50 强)和风险投资级数百万价值项目和计划级管理、业务发展和增长方面的工作经验,对企业和金融部门的经济学、结构和依赖关系、尽职调查、创新营销、最佳实践和风险有直接影响,这些都对成功或失败有影响
会影响接收器灵敏度,从而降低通信系统的性能 [3, 4]。因此,在将 RF 无源元件部署到通信系统之前,确保它们符合 PIM 要求非常重要。当两个或多个 RF 信号在非线性接触 [5] 或非线性材料 [6] 中混合时,就会发生 PIM。如果生成的 PIM 的频率落在接收器的工作频带内,则可能会引起干扰,从而导致信道容量降低并降低通信系统的性能。可以根据 IEC 62037-1 标准 [7] 中的相关测量不确定度 (MU) 来测量 PIM。但是,不确定度预算中没有考虑一些贡献。本文采用两种方法来评估 PIM 水平对载波功率的灵敏度,如下一节所述。接下来的章节将详细介绍用于测量被测设备 (DUT) 的 PIM 的测量设置和计算 PIM MU 的过程。最后,介绍并讨论了 PIM MU 的结果和不确定度预算。 PIM 载波功率灵敏度的计算方法 使用拟合分析模型计算 PIM 灵敏度 开发了几种分析模型 [8] – [11] 来估计 PIM。在 [8] 中,DUT 的非线性被建模为多项式级数。多项式级数的复杂性显著增加
2 平衡单粒子格林函数 9 2.1 格林函数的定义.....................................................................................................................................................................................................................................9 2.2 松原格林函数的性质....................................................................................................................................................................................................................................10 2.2.1 周期性和傅里叶级数....................................................................................................................................................................................................................10 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................. 17 2.4.1 莱曼表示.................................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................................... 17 20 2.4.3 松原频率求和....................................................................................................................................................................................................................20 2.5 2 粒子相关函数....................................................................................................................................................................................................................................................................21
课程名称:数学 1(必修,第一学期,7 ECTS) 课程目标:本课程旨在使学生能够将通过本课程获得的知识应用于电气工程和计算机研究专业课程的辅助工具。 学习成果:成功完成本课程后,学生将能够: 1. 了解并设计解决其专业领域中涉及复数运算的各种问题。使用矩阵和行列式,他们能够解决和应用与线性方程组相关的问题。 2. 理解和应用向量概念以及空间解析几何中的其他元素,设计和开发这些问题。 3. 在研究中发现各种电现象的功能连接大小,然后通过微分学描述和检查它们,知道如何找到它们的最大值并通过图形表示整体,注意它们的所有属性。 课程内容。实数和复数。矩阵、行列式和线性系统求解。向量运算和向量的线性组合。两个向量的标量积和它们之间的角度。向量的向量积、标量三重积和向量三重积。向量的线性独立性和向量的基分解。单变量函数、极限及其连续性。序列的极限。级数的定义及其收敛性。级数收敛的准则。函数的导数及其应用。教学方法:45 小时讲座 + 45 小时听课练习。约 120 小时个人学习和练习。评分制度:家庭作业 10%,期中考试 30%,期末考试 60% 文学:
课程名称:工程数学 - III 课程代码:15MAT31 学分:04 L-T-P:4-0-0 每周接触时间:04 总时间:50 考试。分数:80 IA 分数:20 考试。小时数:03 课程目标:本课程的目标是通过让学生学习傅里叶级数、傅里叶变换和 Z 变换、统计方法、数值方法求解代数和超越方程、矢量积分和变分法,向学生介绍不同工程领域中最常用的分析和数值方法。模块 RBT 级别
课程成果:完成本课程后,学生将能够 CO1 – 识别无穷级数收敛在工程方面的应用。 CO2 – 理解方向导数、无旋和螺线管矢量场的概念。 CO3 – 培养应用适当工具/方法提取工程问题解决方案的能力。 CO4 – 结合理论分析获得的解决方案。 CO5 – 评估从实数到复数域的数学问题。 CO6 – 评估格林定理、斯托克斯定理和散度定理的问题。 文本/参考书:
模拟量子多体系统的动力学是物理学、化学和材料科学以及其他科学技术领域面临的核心挑战。虽然对于传统算法来说,这项任务通常难以完成,但量子电路提供了一种绕过传统瓶颈的方法,即通过“电路化”相关系统的时间演化。然而,当今的量子计算设备只允许对小型且嘈杂的量子电路进行编程,这种情况严重限制了这些设备在实践中的应用类型。因此,电路化程序的量子比特和门成本理所当然地成为决定任何潜在应用可行性的关键因素,而且越来越高效的算法正在不断被设计出来。我们提出了一种在量子电路上进行资源高效的汉密尔顿动力学模拟的新方法,我们认为该方法与最先进的量子模拟算法相比具有某些优势,这些优势直接转化为更短的算法运行时间[1、2](详细比较见第 4 节)。我们通过利用量子时间演化算子在其非对角线元素中的级数展开来实现这一点,其中算子围绕其对角线分量展开 [ 3 – 5 ]。这种展开允许人们有效地积分演化的对角线分量,从而与现有方法相比降低了算法的整体门和量子比特复杂性。在我们的方法中,时间演化被分解为相同的短时间段,每个时间段都使用非对角线级数中的多个项精确近似
我们研究并行性如何加速量子模拟。提出了一种并行量子算法来模拟一大类具有良好稀疏结构的汉密尔顿量的动力学,这些汉密尔顿量称为均匀结构汉密尔顿量,其中包括局部汉密尔顿量和泡利和等各种具有实际意义的汉密尔顿量。给定对目标稀疏汉密尔顿量的 oracle 访问,在查询和门复杂度方面,以量子电路深度衡量的并行量子模拟算法的运行时间对模拟精度 ϵ 具有双(多)对数依赖性 polylog log(1 /ϵ )。这比以前没有并行性的最优稀疏汉密尔顿模拟算法的依赖性 polylog(1 /ϵ ) 有了指数级的改进。为了获得这个结果,我们基于 Childs 的量子行走引入了一种新的并行量子行走概念。目标演化幺正用截断泰勒级数近似,该级数是通过并行组合这些量子行走获得的。建立了一个下限Ω(log log(1 /ϵ )),表明本文实现的门深度对ϵ 的依赖性不能得到显著改善。我们的算法被用来模拟三个物理模型:海森堡模型、Sachdev-Ye-Kitaev 模型和二次量子化的量子化学模型。通过明确计算实现预言机的门复杂度,我们证明了在所有这些模型上,我们的算法的总门深度在并行设置下都具有 polylog log(1 /ϵ ) 依赖性。