摘要。通过总反射X射线荧光(TXRF)进行了优化的分类喷嘴的排列,已开发出一种新的级联冲击器。txrf提供了几个绝对质量图的范围内的检测极限,因此为气溶胶颗粒中重元的元素分析带来了巨大的潜力。要充分利用这种高灵敏度,必须在TXRF仪器的有效分析区域中收集颗粒,该仪器通常比商用撞击器或过滤器的典型沉积模式小。这是通过直径小于5 mm的圆形区域内的分类喷嘴的新型紧凑排列来实现的。从内部到喷嘴簇外部的喷嘴间距的密度降低,可以持续跨流量条件,从而最大程度地减少了单个喷嘴的相互震动。将多阶段级联撞击器的设计显示为单独采样PM 10,PM 2。5和PM 1大小分数。考虑到TXRF分析的高灵敏度,已经采取了建设性措施来防止损耗撞击物材料,这可能导致有条不紊的空白值。既无法观察到损耗和交叉污染的实验验证措施。此外,已经开发了一种新的自旋涂层方法,这使得可以在样品载体上涂上薄而定义的粘合剂层,具有良好的可配合性。在德国柏林Potsdamer Platz的一个案例研究中应用撞击器的应用表明,以中等体积的流量为5 lmin-1,在30分钟内收集的粒子质量是可重复的TXRF TXRF分析(Fe,Zn,Zn,Zn,
摘要:光电半导体设备中的创新是由对如何移动电荷和/或激子(电子 - 孔对)的基本理解驱动的,例如用于做有用工作的指定方向,例如制造燃料或电力。二维(2D)过渡金属二甲化物(TMDCS)和一维半导体的单壁碳纳米管(S-SWCNT)的多样性和可调性和光学性能使它们跨越了跨越HersoIftf的基本量子研究。在这里,我们演示了混合维度2D/1D/2D MOS 2/swcnt/WSE 2杂型词,该杂质可实现超快速光诱导的激发激素离解,然后进行电荷扩散和缓慢的重组。重要的是,相对于MOS 2/SWCNT异质数,异位层的载体产量是两倍,并且还展示了分离电荷克服层间激子结合能的能力,可以从一个TMDC/SWCNT界面扩散到另一个2D/1D界面,从而在COULOMBINDING INDENDINCLING INDEND INDENCE中分散。有趣的是,杂体似乎还可以有效地从SWCNT到WSE 2,这在相同准备的WSE 2 /SWCNT Heterobilayer中未观察到,这表明增加纳米级三层的复杂性可能会改变动态途径。我们的工作提出了“混合维度” TMDC/SWCNT的杂体,这是纳米级异位方面的载体动力学机械研究的有趣模型系统,以及用于高级光电系统中的潜在应用。关键字:过渡金属二分法,电荷转移,异质界,碳纳米管,激子O
摘要:用于3D体积生成和重建的生成对抗网络(GAN),例如形状产生,可视化,自动化设计,实时仿真和研究范围,在各个领域都受到了更多的关注。但是,诸如有限的培训数据,高计算成本和模式崩溃问题之类的挑战持续存在。我们建议将变异自动编码器(VAE)和gan结合起来,以发现增强的3D结构,并引入一种稳定且可扩展的渐进式增长方法,以生成和重建基于体素的基于体素的3D形状。级联结构的网络涉及生成器和鉴别器,从小型体素大小开始,并逐步添加图层,同时在每个新添加的层中使用地面标签监督歧视器,以建模更广阔的体素空间。我们的方法提高了收敛速度,并通过稳定的增长来提高生成的3D模型的质量,从而促进了复杂的体素级详细信息的准确表示。通过与现有方法的比较实验,我们证明了方法在评估体素质量,变化和多样性方面的有效性。生成的模型在3D评估指标和视觉质量中表现出提高的准确性,使它们在包括虚拟现实,元评估和游戏在内的各个领域都很有价值。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
传染病的扩散强调了预防措施的重要性,面罩的使用是减轻空中传播的关键策略。在这种情况下,计算机视觉技术的集成提供了一种技术解决方案,用于监视面罩依从性。本摘要提出了一项研究,该研究重点是实施级联分类器技术,以进行自动面罩检测。这项研究的主要目的是评估级联分类器技术在识别戴着戴面膜或不戴上面罩的个体方面的功效。通过利用机器学习算法和对象检测原则,该研究旨在开发一个可靠,高效的系统,用于实时面罩检测。该研究采用了一个数据集,其中包括各种环境中有或没有面罩的各种环境中的不同图像。利用OPENCV库,对级联分类器技术进行了训练,以识别与口罩相关的独特模式。级联框架执行快速和连续过滤的能力被利用以准确检测面孔并评估面具的存在。该研究的结果证明了喀斯喀特分类器技术的成功实施,以实现面罩检测。训练有素的分类器在区分戴面膜和戴面具的个体时表现出值得称赞的精度,精确性和回忆。该系统展示了其在实时场景中运行的能力,从而有助于对公共空间的有效监视。
这种新型 ICL 激光器能够高效工作,覆盖从 2 μm 以下到 11 μm 以上的大范围中红外波长 [2-8] 。此外,近年来,这种激光器已经在商业上可用 [7],用于化学传感、成像和工业过程控制等实际应用。尽管如此,它们仍然价格昂贵,供应商很少,交货时间相对较长。部分原因是 ICL 的 Sb 基 III-V 材料和相关器件制造技术不太成熟,而且与更成熟的 InP 和 GaAs 基材料体系相比,Sb 基材料的生长资源有限。因此,与其他半导体激光器(如带内量子级联激光器(QCL)[9] )相比,在 ICL 开发上投入的努力非常有限。ICL 的许多方面尚未探索或仍处于早期阶段。
[11],文献中缺乏关于 ICL 器件性能如何依赖于层结构参数变化的讨论和研究,这可能使一些人持怀疑态度。通过对源电池和基底进行非常稳定的温度控制,可以将结构偏差降至最低。即便如此,由于 ICL 结构中采用的 III - V 族材料范围以及生长它所需的时间长度,合金成分和层厚度的一些意外变化是不可避免的。在本文中,通过研究由两个结构无意中与设计有很大偏差的 ICL 晶圆制成的器件,我们评估了器件性能特征在多大程度上能够承受无意的结构变化。此外,我们证明即使与设计有很大偏差,器件性能仍然可以相当好。需要注意的是,我们报告的 ICL 耐久性并不一定适用于 QCL,因为 QCL 的快速声子散射时间在皮秒量级(甚至更短)。由于这与载流子带内渡越时间相当,因此 QCL 中的粒子数反转条件更具挑战性。相比之下,对于 ICL,带间跃迁时间在纳秒量级 - 比导带或价带中的声子散射时间和带内渡越时间长三个数量级。因此,ICL 中的两个带间跃迁态之间可以很好地建立粒子数反转,而不必像 QCL 那样依赖于不同带内状态之间微妙的能级排列和快速声子介导的耗尽效应
摘要:锂离子电池在线监视由于其内部状态的不可衡量的特征而具有挑战性。到目前为止,电池监视的最有效方法是基于等效电路模型应用高级估计算法。此外,一种估计缓慢变化的不可估计的参数的通常方法是将它们包括在零时间导数条件下,构成所谓的扩展等效电路模型,并已广泛用于电池状态和参数估计。尽管将各种高级估计算法应用于联合估计和双重估计框架,但这些估计框架的本质尚未更改。因此,电池监视结果的改进有限。因此,本文提出了一种新的电池监视结构。首先,由于叠加原则,提取了两个子模型。对于非线性,进行了可观察性分析。表明,局部可观察性的必要条件取决于电池电流,电池容量的初始值以及相对于充电状态的开路电压的衍生物平方。然后,获得的可观察性分析结果成为提出新的监测结构的重要理论支持。选择并使用常用的估计算法,即卡尔曼过滤器,扩展的卡尔曼过滤器和无香的卡尔曼过滤器。使用合成数据的数值研究已证明了所提出的框架的有效性。使用合成数据的数值研究已证明了所提出的框架的有效性。除了提供电池开路电压的同时估算外,电池容量估计更快,更易用的电池容量估计是新提出的监测结构的主要优势。
由于气候变化,热带气旋变得更加激烈,与基于数学模型的传统方法相比,基于AL的建模的崛起提供了一种更实惠和更容易获得的方法。这项工作通过整合卫星成像,遥感和大气数据来利用生成扩散模型来预测旋风轨迹和降水模式。它采用了一种级联的方法,该方法包含三个主要任务:预测,超分辨率和降水建模。培训数据集包括2019年1月至2023年3月的六个主要热带气旋盆地的51个旋风。实验表明,来自级联模型的最终预测显示,对于所有三个任务,分别超过0.5和20 dB的良好结构相似性(SSIM)和峰值信号 - 噪声比(PSNR)值(SSIM)和峰值信号 - 噪声比(PSNR)值分别具有出色的结构相似性(SSIM)。可以在单个NVIDIA A30/RTX 2080 Ti的30分钟内生成36小时的预测。这项工作还强调了AL方法的有希望的效率,例如在天气预报中为高性能需求的扩散模型,例如热带气旋预测,同时保持计算负担得起,使其非常适合具有关键预测需求和财务限制的高度脆弱区域。代码可在https://github.com/nathzi1505/forecast-diffmodels上访问。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的设备示意图。 b ,在 56 µ m × 56 µ m 上,能量范围在 1.525eV 和 1.734eV 之间的光致发光强度云图。白色虚线标记了潜在的单层区域。c ,WSe 2 单层中局部发射极在 4.5K 下的光致发光光谱,随着激光功率的增加显示出不同的发射行为,以 1.7167eV(P1)和 1.7206eV(P2)处的峰值为主。d ,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,P1 和 P2 的光子发射的积分计数随着激光功率的增加显示出超线性和亚线性行为