蛋白质-配体对接是一种计算机模拟工具,用于在药物发现活动中筛选潜在药物化合物与给定蛋白质受体结合的能力。实验性药物筛选成本高昂且耗时,因此需要以高通量的方式进行大规模对接计算以缩小实验搜索空间。现有的计算对接工具中很少有考虑到高性能计算而设计的。因此,通过优化最大限度地利用领先级计算设施提供的高性能计算资源,可以使这些设施用于药物发现。在这里,我们介绍了 AutoDock-GPU 程序在 Summit 超级计算机上的移植、优化和验证,以及它在针对导致当前 COVID-19 大流行的 SARS-CoV-2 病毒蛋白的初步化合物筛选工作中的应用。1
• 有多种因素会影响 CPU 的性能,现在我们只讨论时钟速度 时钟速度 • 获取-解码-执行周期的速度由 CPU 的时钟芯片决定。该芯片使用保持恒定速率的振动晶体。时钟速度以赫兹 (Hz) 为单位,即每秒的周期数。500Hz 的时钟速度意味着每秒 500 个周期。当前计算机的 CPU 时钟速度为 3GHz,意味着每秒 30 亿个周期。 超频 • 可以提高 CPU 的时钟速度。这称为超频。理论上,如果时钟速度更快,那么 CPU 可以执行更多计算,因此性能更快。问题是 CPU 做的工作越多,温度就越高 - 因此如果没有适当的热量管理,超频是危险的。如果您想挑战自己,可以对“CPU 核心”和“CPU 缓存”做一些独立研究!
A. 勾选( )正确答案。 1. 我们输入计算机的数据充当什么角色? a. 输入 b. 输出 2. 计算机遵循这个循环? a. BPO __ b. IPO__ __ 3. 我们使用此设备提供输入? a. 键盘 _ ___ b. 显示器 _____ 4. 该设备向我们显示输出? a. 鼠标____ b. 显示器 __ __ B. 圈出正确的输出。
约旦大学教育科学学院 摘要 本研究旨在确定基于人工智能的教育软件教学方法对约旦 10 年级计算机科学学生学业成绩及其态度的影响。为了实现本研究的目标,设计了一个计算机软件,应用于约旦大学学校特意选择的 (50) 名 10 年级学生。研究样本随机分为两组:使用教育软件教学的实验样本和以传统方法教学的对照样本,研究人员准备了一个成就测试来衡量 10 年级学生在计算机科学科目的学业成绩,其中测试的有效性和可靠性已经过验证,重测信系数为 (0.86)。准备了一份关于态度的问卷,并验证了其有效性和可靠性。问卷的信度系数基于Cronbach's alpha方程为(0.01)。为了分析结果,我们使用了协方差分析(ANCOVA),研究结果表明,实验组使用基于人工智能的教育软件学习计算机科学学科具有统计学上的显著差异。结果还显示,实验组对教育软件的态度为中等积极。本研究建议在计算机科学学科教学领域设计和开发计算机化软件,并在基础教育领域培训和鼓励教师使用基于人工智能的学习。关键词:人工智能软件、学业成绩、学生态度、约旦大学学院 DOI:10.7176/JEP/11-7-10 出版日期:2020 年 3 月 31 日 1.1 简介 我们这个时代教育过程面临的最核心挑战之一是探索有效的教育方法的能力,以及能够设计一个满足学习者需求、激励他们并激发他们融入教育过程兴趣的交互式学习环境。随着各种现代技术手段的出现,传统方法的教学已不再可行,必须在适当的教育位置激活和使用技术,以确保取得积极成果。虽然教学方法自古以来就存在,但并没有以系统的方式使用目的不仅仅是使用技术,而是根据教育情况和教育过程的目标来规划选择适当的教育方法。根据目标学习者在适当的教育位置使用适当的教育工具时,我们可以为学习过程增加新的价值;我们可以实现我们努力实现的目标,因为信息和通信技术提供了许多超越时间和空间限制的高效手段。它还为学习者开辟了新的视野,通过该技术提供的服务(例如互联网、电子邮件、教育软件、交互式白板、视觉媒体、视听手段和现成的教育包),赋予学习者在学习和互动过程中的责任和最大作用(Bani Abdo,2017)。正如 Zemam 和 Sulaimani (2013) 指出的那样,我们必须努力理解和研究这些方法对教育学习过程的重要性和影响,并确定它们的类型,以便根据目标受众或适当的教育立场区分最合适的类型。在此背景下,我们必须确定在特定教育情况下使用特定方法的效果,其中使用一种方法比在相同教育情况下使用另一种方法对目标学习者的影响更大。鉴于知识的扩展和通信手段的技术发展正常导致生活的各个方面的巨大发展和加速变化,以及所有科学领域中大量信息的可用性,有必要发展教育理念并改变教师的角色,摆脱传统的填鸭式教学,更多地依靠在学习者面前提供专业领域。出于这些原因,提供允许专业领域多样化的教育手段至关重要,这使得学习者能够实践学习过程以获得新的经验,使他能够面对生活中不断变化的需求。
摘要。本文介绍了库尔恰托夫研究所“Cognimed”资源中心获取的 MRI/fMRI 断层扫描数据的自动处理和分析系统的计算机模型。该系统基于“数字实验室”IT 平台,涉及库尔恰托夫研究所超级计算机集群 HPC4,通过在超级计算机节点(1 个受试者 - 1 个节点)上并行计算,可以加快群组(2-350 个受试者)的数据处理速度。所提出的系统允许科学家远程使用安装在超级计算机上的专用软件来处理和分析 MRI/fMRI 数据;组织统一的数据存储;允许通过 Web 界面处理数据。该系统还允许使用 KI 研究人员开发的程序模块,这些程序模块实施数学方法来改进数据分析结果。作为该计算机模型实现的一个例子,介绍了模块“MRI FS”,它使用开放的专用软件 FreeSurfer v.6.0 自动处理和分析 MRI 数据。
“如何度过人工智能寒冬” James Luke 博士,IBM 杰出工程师和首席发明家 如果您不知道,人工智能寒冬是指在人们对人工智能的期望达到顶峰之后出现的低迷,资金枯竭,专业人士对其潜力嗤之以鼻。70 年代末 80 年代初发生过一次人工智能寒冬,十年后又发生过一次——最后一次是在 1992 年。在这样的“寒冬”里,人们对人工智能嗤之以鼻并不罕见——James Luke 深情地回忆起 IBM 的一位(至今仍是)高管在他职业生涯早期告诉他,“如果你想在公司有所成就,就离开人工智能”。但即便是 Luke 也承认,考虑到挑战的规模,出现怀疑者并不奇怪。Luke 在会议开幕式主旨演讲中表示:“我们试图用人工智能重塑人脑的智能,这是人类面临的最大工程挑战。” “它比曼哈顿计划、比大型强子对撞机还要大——但我们通常只以两三个人组成的团队进行研究。”尽管如此,他仍敦促与会代表对人工智能保持积极态度,因为如果以正确的方式对待,人工智能可以发挥作用并带来巨大的机遇。那么,什么才是“正确的方式”?卢克说,人工智能有效用例的最佳例子之一仍然是 1997 年超级计算机深蓝与世界冠军国际象棋选手加里卡斯帕罗夫之间的著名比赛。深蓝曾在 1996 年挑战卡斯帕罗夫并失败,而它的架构师 IBM 决心不再重蹈覆辙。IBM 工程师寻求另一位国际象棋大师的帮助来构建深蓝,并对计算机进行编程,使其能够预测未来 14 步。从本质上讲,它复制了人类的能力,但通过巨大的规模进行了扩展。尽管“深蓝”赢得了 1997 年的锦标赛,但它的局限性也暴露无遗。当时参与打造它的大师说:“深蓝每秒评估两百万步,我评估三步。但我怎么知道该评估哪三步?”卢克说,这句话完美地概括了人工智能的缺点:“我们还没有解决这个问题,我们不明白大师如何知道该评估哪三步。这是智能和人工智能之间差异的一个很好的例子。人工智能不会比人类更好——人类脑细胞比电子神经元复杂得多。”他补充说,人工智能经常被认为比人类智能更好,因为它不会忘记东西。但卢克认为,人类忘记的能力是智能的一部分,因为忘记可以帮助我们“概括、实验和学习”——更不用说不会被我们做过的所有可耻的事情所打败。卢克分享了三条让人工智能发挥作用的建议:
本课程旨在让七年级学生接触文字处理、桌面出版和文档格式化。旨在帮助他们获得可以在整个课程中使用的中级技能。此外,学生将练习字母键盘和数字键盘训练。最后,学生将探索互联网安全和版权问题。宾夕法尼亚州标准七年级计算机技术技能是一门为期 9 周的课程,旨在帮助学生获得满足以下宾夕法尼亚州标准所需的知识和技能:PA 标准:3.7.7