b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'
b'对于任何一对纯状态| \ xcf \ x88 \ xe2 \ x9f \ xa9,| \ xcf \ x86 \ xe2 \ x9f \ xa9 \ xe2 \ x88 \ x88h。但是,如果| \ xe2 \ x9f \ xa8 \ xcf \ x88 | \ xcf \ x86 \ xe2 \ x9f \ xa9 | = 0或| \ xe2 \ x9f \ xa8 \ xcf \ x88 | \ xcf \ x86 \ xe2 \ x9f \ xa9 | = 1导致矛盾,因为纯净的状态都不满足。请注意,此论点实际上意味着更强有力的陈述:没有统一的u \ xe2 \ x88 \ x88 u(h)可以满足(1)对独特的,非正交的纯态| \ xcf \ x88 1 \ xe2 \ x9f \ xa9,| \ xcf \ x88 2 \ xe2 \ x9f \ xa9 \ xe2 \ x88 \ x88h。非正交性的假设在这里至关重要,例如,对某些正交纯状状态满意(1)。以前的参数似乎并不完全笼统,因为可能存在更多的一般方案来复制量子信息。最通用的操作将是一些量子通道T:B(H)\ Xe2 \ X86 \ X92 B(H \ Xe2 \ X8A \ X97H)满足Tr \ Xe2 \ X8A \ X8A \ X97 ID B(H) \ xe2 \ x97 \ xa6 t = id B(h)。(2)'
我们考虑在提供 n 个状态副本时以零误差区分对称纯状态的在线策略。优化的在线策略涉及对每个副本进行局部、可能自适应的测量,并且在每个步骤中都是最优的,这使得它们与视界无关,因此在粒子丢失或突然终止鉴别过程之前具有鲁棒性。我们首先回顾了以前关于使用局部测量实现最大成功概率集的二进制最小和零误差鉴别的结果,这些结果通过对全局测量进行优化来实现,并突出了它们的在线特性。然后,我们将这些结果扩展到具有恒定重叠的三个对称状态的零误差识别的情况。如果状态重叠为正,则我们提供最佳在线方案,对于任何 n 都可实现全局性能,如果重叠为负,则对于奇数 n 可实现全局性能。对于任意复杂的重叠,我们展示了令人信服的证据表明在线方案无法达到最佳全局性能。我们描述的在线方案只需要将最后获得的结果存储在经典内存中,并且测量的自适应性最多减少到两次变化,而不管 n 的值如何。
摘要:量子信息的掩蔽意味着信息从子系统中隐藏,并分散到复合系统中。Modi 等人在 [Phys. Rev. Lett. 120, 230501 (2018)] 中证明,对于某些非正交量子态的受限集,掩蔽是正确的,而对于任意量子态,掩蔽是不可能的。在本文中,我们分别讨论了掩蔽纯态和混合态中编码的量子信息的问题。基于已建立的纯态集被算子掩蔽的必要条件和充分条件,我们发现存在一组四个不能被掩蔽的状态,这意味着掩蔽未知的纯态是不可能的。我们构造了一个掩蔽器 S ♯ 并获得了其最大可掩蔽集,从而对上述 Modi 论文中提出的猜想给出了肯定的回答。我们还证明了纯态的正交(或线性无关)子集可以通过等距(或注入)进行掩蔽。将纯态的情况概括起来,我们引入了一组混合态的可掩蔽性,并证明混合态的交换子集可以被等距 S ⋄ 掩蔽,但任何算子都不可能掩蔽所有混合态。我们还分别找到了等距 S ♯ 和 S ⋄ 的混合态的最大可掩蔽集。