奎那那可再生燃料 (KRF) 项目是一项在现有的 BP 奎那那炼油厂建造和运营生物燃料加工厂的提案。该提案位于奎那那工业区 (KIA),距离西澳大利亚珀斯以南约 30 公里(图 1)。该提案的提议者是 BP 炼油厂(奎那那)有限公司 (BP)。该提案旨在建立生物炼油厂,加工植物油、动物脂肪和其他生物废物产品以生产生物燃料。现有的碳氢化合物精炼和加工基础设施将被重新利用,并与新的基础设施相结合,以促进该提案的实施。该提案位于奎那那工业区现有的 BP 奎那那炼油厂边界内,将使用现有的受干扰足迹。该提案不需要清除植被(图 2)。EPA 认为,在现有工业区选址该提案以及对现有设施的重新利用符合良好的环境实践和 1986 年环境保护法(该法案)的目标。
我们的看法:Narayana Hrudayalaya Ltd (NHL) 在印度拥有 45 家医疗机构网络,包括 18 家自有/运营医院、1 家管理医院、4 家心脏中心和 21 家初级保健机构,共计 6,164 张床位。该公司在印度拥有稳固的影响力和强大的品牌知名度,尤其是在两个地区(班加罗尔和卡纳塔克邦)。旗舰单位的强劲表现与新医院的稳步改善相得益彰。入住率和客流量的提高,加上 ARPOB 的增加,导致新医院的亏损缩小。为了巩固其在印度的地位,该公司正在优先考虑现有设施的瓶颈消除和棕地扩建。未来两年,印度不会有显著的床位增加。其首要任务是增加现有医院单位的棕地容量。新医院的稳定收入、付款人组合的变化、高端手术比例的增加以及高床位周转率(较低的 ALOS)是中期的关键驱动因素。 NHL 愿意通过在核心区域新建设施以及非直接投资机会来追求战略增长。Narayana 拥有并经营着 Health City Cayman Islands (HCCI),这是一家拥有 110 张床位的设施,位于加勒比海的开曼群岛。由于靠近机场和几个主要住宅区,卡马纳湾的新医院可能会扩大其对国际和本地患者的覆盖范围。这将使 NHL 能够满足当地居民的需求,他们通常会出国接受高端医疗。新设施将补充现有设施,更多地关注日间护理、短期住院但小众的肿瘤护理类别,而现有设施将继续提供三级和四级护理。24 财年的资本支出指导为 114 亿卢比,其中 40 亿卢比发生在 24 财年上半年。开曼群岛新投入使用的放射肿瘤科大楼取得了显著的进展。开曼群岛一家新的多专科医院有望在 2025 财年第一季度实现商业化。我们于 2023 年 9 月 15 日发布了一份关于 Narayana 的报告,其 CMP 为 1092 卢比,基本目标为 1195 卢比,牛市目标为 2-3 季度的 1265 卢比(链接)。该股在短短 2 个月内就实现了这两个目标。鉴于上半年的强劲业绩和对该行业的良好前景,我们发布了该股的股票更新说明。
1. 中国对新能源技术的追求中国的投资——不仅在新能源技术的研发上,而且特别是在这些技术的制造能力上——长期以来一直是中国国内经济定位于关键新兴工业领域的广泛战略的一部分。从 21 世纪初的风能行业开始,到 2009 年金融危机后的太阳能行业,以及最近的电动汽车和电池储能行业,中国中央政府一直支持新能源技术,以结合气候和经济目标并创建出口就绪的工业部门。中国现在在通过降低电力和交通运输部门的碳排放来解决气候危机最需要的技术的大规模生产方面处于世界领先地位。这些新能源技术包括风力涡轮机、太阳能电池板、电动汽车和电池。自 2001 年加入世界贸易组织以来,中国在全球太阳能光伏发电中的份额迅速增长,从不到 1% 跃升至全球太阳能电池板的 60% 以上。中国是世界上最大的电动汽车生产国之一;中国生产的风力涡轮机占全球总产量的三分之一以上,为全球风力涡轮机装置生产的零部件也占了很大一部分。中国拥有全球三分之二以上的电动汽车和储能所需锂离子电池产能。中国与欧盟现在也是世界上最大的电动汽车市场之一。1 在很大程度上,由于中国在绿色技术领域的制造业进行了前所未有的投资,清洁能源技术的成本大幅下降。自 2009 年以来,全球风力涡轮机和太阳能电池板的价格分别下降了 69% 和 88%,使得这些产品的价格下降。
使它们适合于纳米素质,纳米传感,纳米电子等学科等。[5]。有许多类别的纳米线,根据其组成,结构和特性进行分组。•半导体纳米线:这些是使用硅,硝酸盐或氧化锌等半导体材料生产的,并在电子和光子学中广泛使用,用于半导体,太阳能电池,太阳能电池和光发射diodes(LEDS)等。[6]。•金属纳米线:这些由金,银或铜等金属元素组成,并用于导电电极/膜等应用中,作为化学过程的催化剂等。[7]。•氧化物纳米线:这些纳米线是使用金属氧化物(如二氧化钛或氧化铁)产生的,并用作传感器,催化剂和基于能量的储存电子[8]。•碳纳米管:具有类似于纳米线的特性的空心纳米结构。他们在电子,材料科学和生物医学工程中有应用[9]。•混合纳米线:这些由不同的
都道府県事业者名/屋屋号市区町村・町名业种 取组段阶 东京都 TRC合同会社 足立区栗原 农业・林业 二つ星 东京都株式会社suパイスワークスホールディングsu 台东区浅草桥 农业・林业 二つ星 都银座农园株式会社 中央区银座农业·林业二つ星 东京都有限公司 中央区银座 农业·林业二つ星 东京都医疗AI推进机构株式会社 中央区日本桥大伝马町 农业·林业二つ星 都 梅村ワタナ/ムエタイハウsu 文京区大冢农业・林业 二つ星东京都株式会社 ウミガメ 豊岛区西池袋 农业・林业 二つ星 东京都 JapanGold 株式会社 港区赤坂鉱业・采石业・砂利采取业 二つ星 东京都株式会社 中央区日本桥 鉱业・采石业・砂利采取业 二つ星 东京都株式会社 广瀬 防水 あきる野市伊奈建设业 二つ星 东京都有限公司 カネショウ あきる野市戸仓建设业 二つ星东京都株式会社FAITHFUL あきる野市山田建设业二つ星东京都株式会社日栄测量设计 あきる野市二宫建设业二つ星东京都有限公司株式会社サninushisuテームあきる野市二宫建设业 二つ星 东京都株式会社里加鲁建设 稲城市坂浜建设业 二つ星东京都有限公司会稲城防灾设备 稲城市东长沼建设业 二つ星东京都株式会社寿々木工务店 稲城市百村建设业 二つ星 东京都 斋须翔太/SKSERVICE 羽村市五ノ神 建设业 二つ星 东京都株式会社 ネオインテリジェンス 葛饰区お花茶屋 建设业 二つ星 东京都 株式会社rianズマップ葛饰区お花茶屋建设业 二つ星 东京都有限公司 福相兴芸社 葛饰区奥戸 建设业 二つ星 东京都下司奏/riハウsuサポート 葛饰区水元建设业 二つ星 东京都株式会社 三郷新星兴业 葛饰区西水元 建设业 二つ星东京都菊地隆雄葛饰区西水元建设业二つ星东京都双叶ライン株式会社葛饰区西水元建设业二つ星东京都有限公司片仓タイル工业葛饰区西水元建设业二つ星东京都株式会社HRC葛饰区东金町建设业二つ星东京都株式会社黒田电设葛饰区东金町建设业二つ星东京都株式会社暁建设 葛饰区立石建设业二つ星东京都株式会社サkurarufu江戸川区一之江建设业二つ星东京都有限公司萨摩江戸川区一之江建设业 二つ星东京都有限公司美创建江戸川区一之江建设业 二つ星东京都有限公司东京岩井兴业江戸川区春江町3丁目建设业 二つ星东京都株式会社SAKURAWORK'S 江戸川区江建设业 二つ星东京都 アイエ松suai工业江戸川区新堀建设业二つ星 东京都株式会社东京suパria商社 江戸川区瑞江建设业二つ星 东京都メインマーク株式会社 江戸川区西葛西建设业二つ星 东京都株式会社アザーsu 江戸川区西葛西建设业二つ星 东京都株式会社优健工业 江戸川区西葛西建设业二つ星 东京都西葛西建设业二つ星 东京都株式会社kurafuto・K 江戸川区西瑞江建设业二つ星 东京都相马工业株式会社江戸川区南筱崎町建设业二つ星东京都有限公司铃建江戸川区南小岩建设业二つ星东京都suエヒロ工业株式会社江戸川区平井建设业二つ星东京都 オハウジング株式会社 江戸川区北小岩建设业 二つ星 东京都 fuェritchi 株式会社 江东区永代 建设业 二つ星 东京都 株式会社工业开発测量社 江东区塩浜 建设业 二つ星 东京都株式会社 ZERO 江东区亀戸 建设业二つ星 东京都株式会社 八幡工业 江东区亀戸 建设业 二つ星 东京都千代田エナメル金属株式会社 江东区亀戸 建设业 二つ星 东京都 多田建设株式会社 江东区亀戸 建设业 二つ星东京都株式会社 东京宫本电気 江东区三好建设业 二つ星东京都合同会社エコ・ピーsu 江东区支川建设业 二つ星东京都株式会社サン・カミヤ 江东区新大桥建设业 二つ星东京都株式会社コーワシステム江东区潮见建设业二つ星东京都株式会社京叶管理工业 江东区潮见建设业二つ星东京都有限公司エアミッション 江东区潮见建设业二つ星东京都株式会社ヤマデン 江东区冬木 建设业 二つ星 东京都有限公司 TOKYOC 江东区东砂 建设业 二つ星 东京都 株式会社M&Fteecnicica 江东区南砂 建设业 二つ星 东京都 ou2 株式会社 江东区富冈 建设业 二つ星 东京都 株式会社 エコrifォーム 江东区富冈建设业 二つ星 东京都株式会社 博宣 江东区平野 建设业 二つ星 东京都 グリーン総合住宅株式会社 江东区北砂 建设业 二つ星 东京都 株式会社 OWficeMaay 港区 建设业 二つ星 东京都 かたばみ兴业株式会社 港区元赤坂建设业 二つ星 东京都株式会社 エコライfu 港区元麻布建设业 二つ星 东京都株式会社 インデックストラテジー 港区虎ノ门 建设业 二つ星 东京都MEDCommunications 株式会社 港区港南 建设业 二つ星 东京都 タイホーエンジniaaringu 港区高轮 建设业 二つ星 东京都 株式会社 LOTUS 港区高轮 建设业 二つ星 东京都 株式会社ティ・アイ・シー 港区三田建设业二つ星 东京都株式会社电巧社 港区芝建设业二つ星 东京都建物本铺株式会社 港区芝建设业二つ星
兹 提 述 通通 AI 社 交 集 团 有 限 公 司 ( 「 本 公 司 」 ) 日 期 为 二 零 二 四 年 十 一 月 二 十 七 日 之 公 告 ( 「 该 公 告 」 ), 内 容 有 关 本 公 司 与 创 辉 资 本 订 立 新 保 理 服 务 框 架 协 议 , 以 及 本 公 司 日 期 为 二 零 二 四 年 十 二 月 十 八 日 之 公 告 ( 「 延 迟 公 告 」 ) 。 除 本 公 告 另 有 界 定 者 外 , 本 公 告 所 用 词 汇 与 该 公 告 所 界 定 者 具 有 相 同 涵 义 。
免责声明 本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构、芝加哥大学阿贡分校有限责任公司及其任何员工或官员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡分校有限责任公司的观点和意见。
摘要 目的 抗癫痫和抗心律失常药物抑制电压门控钠 (Na +) 通道 (VGSC),临床前研究表明这些药物可减少肿瘤生长、侵袭和转移。我们研究了乳腺癌、肠癌和前列腺癌患者使用 VGSC 抑制剂与生存期之间的关联。设计回顾性队列研究。设置从临床实践研究数据链接中提取的个人电子初级医疗保健记录。参与者 132 996 名被诊断为乳腺癌、肠癌或前列腺癌的患者的记录。结果测量调整后的 Cox 比例风险回归用于分析与接触 VGSC 抑制剂相关的癌症特异性生存期。还考虑了非 VGSC 抑制抗癫痫药物和其他非 VGSC 阻滞剂的暴露。药物暴露被视为时变协变量,以解释永恒时间偏差。结果 在 1 002 225 人年的随访中,共有 42 037 人死于癌症。53 724 名(40.4%)癌症患者至少开过一次 VGSC 抑制剂处方。癌症死亡风险的增加与接触此类药物有关(HR 1.59,95% CI 1.56 至 1.63,p<0.001)。这适用于 VGSC 抑制三环抗抑郁药(HR 1.61,95% CI 1.50 至 1.65,p<0.001)、局部麻醉药(HR 1.49,95% CI 1.43 至 1.55,p<0.001)和抗惊厥药(HR 1.40,95% CI 1.34 至 1.48,p<0.001),并且在敏感性分析中持续存在。相反,暴露于 VGSC 抑制 1c 类和 1d 类抗心律失常药物与癌症特异性生存率显著提高相关(分别为 HR 0.75,95% CI 0.64 至 0.88,p<0.001 和 HR 0.54,95% CI 0.33 至 0.88,p=0.01)。结论 VGSC 抑制剂的使用与癌症患者死亡率之间的关联因适应症而异。使用 VGSC 抑制性抗心律失常药物(而非抗惊厥药物)支持了临床前数据的结果,即生存率有所提高。然而,这些关联可能还存在其他混杂因素,这凸显了进一步研究的必要性。
•RCTS(总共28,873例患者):肌腱炎和脊髓炎炎很常见(<1%),肌腱破裂很少见(<0.1%)。•病例报告(10例肌腱破裂和15例肌腱炎):报告了所有三种类型的第三代AI病例,并涉及上肢和下肢。存在可能导致不良事件的其他药物和/或疾病。由于这些报告中的信息不足,因此在审查中未包括替索诺伏炎的病例报告。
引言小细胞肺癌(SCLC)是一种顽固性恶性肿瘤,治疗方案有限(1)。由于近20年的治疗进展缺乏治疗的进展,其2年生存没有改善(2)。最近批准了几种新的治疗剂,包括免疫检查点抑制剂和lurbinectedin,但只有一部分患者会受益(3)。因此,不需要开发SCLC的新疗法。SCLC的潜在治疗候选者是溴结构域和末端结构域抑制剂(BETIS),它们靶向BET家族蛋白,即BRD2,BRD3,BRD4和BRDT。BET家族蛋白的主要功能是基因转录调节。betis与BET家族蛋白的溴结构域结合,并使它们与活性染色质分离,从而导致基因转录的抑制。由于贝蒂斯仅降低基因的一部分,尤其是与细胞谱系和驱动癌基因相关的基因的表达(4),因此对将此类药物应用于癌症治疗而引起了很大的兴趣。先前的研究报告说,小鼠SCLC非常容易受到贝蒂斯(5)的影响(5),但是人类SCLC系具有更广泛的敏感性(6)。最近我们发现,由于neu-rod1反式激活对BET家族蛋白的依赖,SCLC表达神经1(SCLC-N亚型)的子集特别容易受到BETIS的影响(7)。先前的几项研究报告说,针对PARP,HDAC6或BCL2的抑制剂在SCLC中与BETIS协同作用(8-11)。但是,然而,Beti在体内SCLC-N亚型肿瘤中仅具有适度的抗肿瘤活性(7),这需要一种组合策略来增强其在SCLC和SCLC的其他分子亚型中的抗抗效应。