N.Gopalakrishnan 博士于 1997 年在钦奈安娜大学获得博士学位,研究方向为 III-V 族半导体的成核和生长动力学。获得博士学位后,他前往瑞典皇家理工学院进行博士后研究。后来,他在日本 KIT 和日本 AIST 从事博士后研究 3 年。他曾获得日本政府日本科学技术部颁发的著名 STA(即 JSPS)奖学金,在日本筑波 AIST 工作。之后,他还在韩国东义大学担任博士后研究员一年半。
图 2-8 蒂拉穆克湾 (Tillamook Bay) 的历史水深表面....................................................... 2-32 图 2-9 1996 年洪水的航拍照片.............................................................................. 2-38 图 4-1 调查水生栖息地的溪流......................................................................................... 4-4 图 4-2 ODFW 核心区域和 AFS 水生多样性区域....................................................... 4-5 图 4-3 大型木材招募潜力.................................................................................... 4-6 图 4-4 健康与不健康的河岸状况.................................................................................... 4-18 图 4-5 砾石质量和可用性.................................................................................... 4-22 图 4-6 大型木材.................................................................................................... 4-23 图 4-7 水池面积和频率............................................................................................. 4-24 图 4-8 湿地............................................................................................................. 4-30 图 4-9 流量恢复潜力................................................................................ 4-42 图 4-10 潮汐闸门改造潜力,改善栖息地和水质.................................... 4-58 图 4-11 河口分区图........................................................................................ 4-62 图 6-1 潜在的河道内栖息地改善地点............................
总共有 8 年以上的经验,包括废水处理部门、维护、质量、过程建模和模拟以及教学。其中,在废水处理部门工作了 07 个月,在 CDAC Trivandram 的 MoA 项目下从事建模和模拟工作了 05 个月,在学院 (PCE、SVCE、NITC、NITW 和 NITT) 担任教学人员 7 年。接触过使用盐酸和硫酸处理金属电镀产生的强酸性废水的工作,以及中和池、沉淀池、砂滤器、好氧消化器和泵的操作和设计。具备丰富的知识和使用各种化学工程软件平台的能力,包括 Hysys、Aspen plus 和 MATLAB/Simulink。在行业和学术领域拥有丰富的研究经验,研究成果发表在国际和国家期刊/会议上。精通多变量过程控制技术的建模、模拟、设计和实施。能够分析数据并设计合适的控制策略。处理的主题包括过程仪表动力学和控制、过程仪表、过程强化、化学过程系统、过程流程图、生物医学仪表、传输现象、化学过程计算、传热操作、单元操作、食品技术、化学技术、环境科学与工程、化学工业中的能源管理、污染控制的进展和现代分离过程。
N.Gopalakrishnan 博士于 1997 年在钦奈安娜大学获得博士学位,研究方向为 III-V 族半导体的成核和生长动力学。获得博士学位后,他前往瑞典皇家理工学院进行博士后研究。后来,他在日本 KIT 和日本 AIST 从事博士后研究 3 年。他曾获得日本政府日本科学技术部颁发的著名 STA(即 JSPS)奖学金,在日本筑波 AIST 工作。他还曾在韩国东义大学担任博士后研究员一年半。自 2018 年 3 月起,他担任国家技术学院蒂鲁吉拉帕利分校 (NIT-T) 物理学教授。此前,他于 2007 年 9 月加入该大学担任助理教授,随后于 2010 年 9 月晋升为副教授。他还曾于 2012 年 10 月至 2015 年 11 月担任 NIT-T 副院长(学术),并于 2015 年 1 月至 2018 年 1 月担任物理系主任。N.Gopalakrishnan 博士在国际期刊上发表了约 87 篇研究论文,在国内和国际会议上发表了约 90 篇研究论文。在他的指导下,5 名学生完成了博士学位,43 名学生完成了硕士学位项目。目前,有 6 名学生在他的指导下攻读博士学位。N.Gopalakrishnan 博士在使用多种技术、VPE、MBE、PLD 和溅射生长 III-V 和 II-VI 薄膜方面拥有丰富的经验。此外,他的团队还致力于氧化物纳米材料的合成、自旋电子学、气体传感和水净化。最近,他的团队成功制造了 ZnO pn 结和基于 CuO 和 ZnO 的 IDE 传感器设备。除了在瑞典、日本和韩国进行博士后研究外,他还访问了美国、德国、香港、澳大利亚、德国和新加坡参加会议、科学讨论、实验室访问和发表受邀演讲。他在印度和国外发表了多次受邀演讲。
实现这一目标将有助于确保任何政策变化都能够尽可能地“经济” 2 地惠及个人和社区。但是,经济必须以与促进可持续管理 3 一致的方式进行。否则,很有可能会将最初导致环境问题的经济思维用于评估旨在解决这些问题的政策。这种一致性可以通过更充分地认识效率的含义来实现,其中包括考虑“外部性”(即未考虑的对其他人的影响)。这样,塔拉纳基每个人生活和工作的“系统”就会比原本更加平衡(或者,用经济术语来说,“均衡”)。
该工作组由来自中西部奥拉纳地区的组织代表和社区成员组成。其目的是协调和简化中西部奥拉纳 REZ 可再生能源发电和网络基础设施项目与当地原住民社区代表的参与和协商。这项工作以高效和尊重的方式进行,并减少协商疲劳。成员通过与当地社区工作组的联系来实现这一目标,在那里他们为社区发声。
6 黄金公路 (Mitchell 公路线) / Putty 路 14 黄金公路 / Black Stump Way 中西部地区议会 LGA
收到日期:2022 年 6 月 4 日 修订日期:2022 年 8 月 11 日 接受日期:2022 年 8 月 18 日 摘要——电池储能系统 (BESS) 被认为是最发达的储能系统 (ESS) 技术之一,因为它们对配电网具有不同的好处,例如平滑输出波动、改善电能质量、峰值负荷转移、电压支持和延迟配电网升级。这项工作涉及将 BESS 集成到约旦的 33 KV 配电网中。CYME 软件用于评估 Almanara 光伏电站的 BESS 对 33 KV 中压网络的影响。选择电压水平、功率损耗、功率因数 (PF) 和电压阶跃作为性能指标。对于这些指标中的每一个,都对有和没有 BESS 的电网性能进行了比较。此外,还计算了 BESS 的回收期。结果表明,BESS 不仅提高了电压水平(两个馈线的总体改善率约为 3.03%),而且还降低了损耗,两个馈线的总体损耗降低了 4.68%。发现 BESS 降低了两个馈线的 PF,平均为 0.83,而电压阶跃不超过国际电工委员会 (IEC) 规定的限值。此外,进行的经济分析表明,回收期约为 10.98 年。关键词——电池储能系统;储能系统;技术经济分析;发电厂;回收期。
本报告中的发现和确定的机会基于对拟建输电基础设施和 11 个主要发电项目(称为候选基础发电机 (CFG))的考虑,这些项目旨在连接到 REZ 输电网络。可再生能源项目的开发商需要根据相关法律寻求必要的批准,以便建设和运营其项目,此外还必须参与消费者信托人的竞争性招标程序以获得接入权,然后才能连接到 REZ 输电网络。
所列的拟建风能和太阳能发电机仅基于公开信息提供信息。无法保证所列项目将继续进行并连接到 REZ 网络基础设施。未列示的其他项目可能会继续进行并根据实际情况进行连接。发电机在开始任何工作之前都需要获得单独的规划批准。所列的发电机显示为这些信息属于公共领域的地理区域,以及仅公开披露了地点的圆圈。