在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
3.1 S4 的战略愿景................................................................................................................................................................24 3.2 S4 的主题优先事项.................................................................................................................................................25 电动和联网移动出行................................................................................................................................................27 健康和可持续食品................................................................................................................................................28 绿色能源产业......................................................................................................................................................29 个性化医疗................................................................................................................................................................30 可持续旅游................................................................................................................................................................31 视听产业................................................................................................................................................................32 绿色转型................................................................................................................................................................34 数字化转型................................................................................................................................................................36
抽象引入了双侧前内侧丘脑核(AMSTN)的深脑刺激(DBS),对患有严重,慢性和治疗难治性强迫症(OCD)患者的一部分有帮助。生物标志物可以帮助患者选择和优化这种侵入性治疗。在这项试验中,我们打算评估与STN和相关生物签名相关的神经认知功能,作为OCD中STN DBS的潜在生物标志物。使用治疗难治性强迫症的方法和分析将经历开放标签的STN DBS。在基线时将进行结构/功能成像,电生理记录和神经认知评估。受试者将接受结构化的临床评估,为期12个月。将招募一组24名健康志愿者和24名患有治疗性强迫症的受试者,他们像往常一样接受治疗,以比较生物标志物和治疗反应。基线生物标志物将被评估为临床反应的预测指标。DIV>神经适应性变化将通过重新评估DBS后神经认知功能,成像和电生理活性进行重新评估。道德和传播该协议已得到美国国家心理健康与神经科学伦理委员会的批准。研究结果将通过同行评审的科学期刊和科学会议来传播。
• 可重构硬件中的数值优化以扩展模型预测控制在实时应用中的使用,(已完成,2019 年 12 月 - 2022 年),与印度政府 MHRD 的博士生合作。 • 通过 CARS 资助的车辆研究发展机构 (VRDE)-DRDO,开发车辆动力学工厂模型和与 ARM 平台的嵌入式联合仿真,(已完成,2020-21 年) • 开发传感器和数据采集远程触发虚拟实验室,虚拟实验室是印度政府通过 ICT 计划发起的一项举措,(已完成,2011-2014 年),MHRD,印度政府 • 开发 FPGA 嵌入式系统虚拟实验室,虚拟实验室项目,印度政府通过 ICT 计划发起的一项举措,(已完成,2010-2013 年),MHRD,政府印度 • 用于药物输送援助的皮下静脉检测系统,UGC 重大研究项目计划 (UGC-MRP)(已完成,2011-2014),UGC,印度政府 • 用于模型预测控制器的 DSP 的 VLSI 实现,AICTE 研究项目计划 (AICTE-RPS)(已完成,2008-2010),AICTE,印度政府
瑞士苏黎世大学和苏黎世大学临床神经科学中心医院神经外科系 (ELR);瑞士苏黎世大学和苏黎世大学临床神经科学中心医院神经内科系 (ELR、PR、MW);法国里尔大学 (ELR、PD);法国里尔 CHU 神经外科系神经肿瘤学系 (ELR);法国里尔 Oscar Lambret 中心肿瘤医学系神经内科系 (ELR);法国里尔 CHU 里尔 (PD);瑞士苏黎世大学医院苏黎世大学临床神经科学中心神经放射学系 (SW);比利时布鲁塞尔 EORTC 总部 (HL);荷兰阿姆斯特丹 Antoni van Leeuwenhoek 癌症研究所神经肿瘤学系 (DB、A.Co.);美国伊利诺伊州芝加哥西北大学 Robert H Lurie 综合癌症中心 Malnati 脑肿瘤研究所 (PK);意大利米兰圣拉斐尔生命健康大学和 IRCCS 圣拉斐尔医院神经放射学系(A.Ca.);法国维尔瑞夫古斯塔夫鲁西大学医院放射肿瘤学系(FD);意大利博洛尼亚 IRCCS 博洛尼亚神经科学研究所神经系统医学肿瘤学系(EF);美国坦帕莫菲特癌症中心和南佛罗里达大学神经肿瘤学系(PF);奥地利维也纳医科大学生物医学成像和图像引导治疗系(JF);科隆大学医学院和科隆大学医院神经内科系;于利希研究中心神经科学和医学研究所(INM-3);德国科隆大学亚琛、波恩、科隆和杜塞尔多夫综合肿瘤学中心(CIO)(NG);纳瓦拉健康研究所 (IdiSNA),西班牙纳瓦拉潘普洛纳 (JGP-L.);西班牙纳瓦拉潘普洛纳应用医学研究基金会实体肿瘤项目 (JGP-L.);西班牙纳瓦拉潘普洛纳纳瓦拉大学神经内科系 (JGP-L.);慕尼黑工业大学医学院,伊萨尔右翼医院,神经外科系 (JG);德国法兰克福大学医院神经放射学研究所 (EH);德国图宾根埃伯哈德卡尔斯大学神经放射学系 (JMH);丹麦奥胡斯大学临床医学系 (SL);丹麦奥胡斯大学医院肿瘤科 (SL);锡耶纳大学医学、外科和神经科学系放射肿瘤科;意大利波齐利 (IS) IRCCS Neuromed (GM);美国德克萨斯州休斯顿德克萨斯大学 MD 安德森癌症中心癌症医学部神经肿瘤学系 (BOB);荷兰阿姆斯特丹自由大学阿姆斯特丹 UMC 神经内科系 (TJP);都灵健康科学城和大学神经肿瘤学系,意大利都灵 (RR);德国波恩大学医院神经内科临床神经肿瘤学分部 (NS);德国雷根斯堡大学医学中心神经外科系 (NOS);荷兰乌得勒支大学医学中心乌得勒支脑中心神经内科系 (TJS);英国伦敦伦敦大学学院医院 NHS 基金会国家神经病学和神经外科医院 Lysholm 神经放射学系 (ST);英国伦敦伦敦大学学院神经病学研究所脑康复与修复系 (ST);荷兰鹿特丹鹿特丹大学医学中心伊拉斯姆斯 MC 癌症研究所脑肿瘤中心 (MvdB, MS);荷兰格罗宁根大学医学中心放射科医学影像中心 (AvdH); IMoPA Ingénierie Moléculaire et Physiopathologie Articulaire UMR7365 CNRS-UL,Vandoeuvre les Nancy,法国 (GV);弗朗索瓦巴克莱斯中心,阿尔泽特河畔埃施,卢森堡 (GV);放射学和核医学系,伊拉斯姆斯MC-鹿特丹大学医学中心,鹿特丹,荷兰(MS);路德维希马克西米利安大学神经外科系
在许多方面,关于圣吉拉纳(Vajrayāna)的一系列会议在世界范围内非常特别,即使不是独一无二的会议,将学者和实践者聚集在一起,分享他们的经验和发现。在会议上的讨论和辩论以及此后的诉讼出版物促成了学术界个人与灵性之间的桥梁的杰出形成。我特别高兴地注意到,受人尊敬的中央修道院和不丹研究中心和GNH的中心在这项努力中非常紧密地合作。他们这次以及上一次会议都一起工作。今年也是如此,在本次会议的组织的各个方面,他们的积极作用充分证明了中央修道院的承诺。因他的圣洁而祝福了不丹的最高住持Je Khenpo,他们的杰出人物中央修道院的大师在指导会议的结构中发挥了至关重要的作用。