由于摩尔定律的放缓,数据中心流量增长与电气交换机容量之间日益扩大的差距预计会进一步扩大,这促使人们需要一种新的交换技术来满足后摩尔定律时代日益严格的硬件驱动型云工作负载要求。我们提出了 Sirius,这是一种用于数据中心的光交换网络,它提供了一个单一的高基数交换机的抽象,可以连接数据中心中的数千个节点(机架或服务器),同时实现纳秒级的重新配置。在其核心,Sirius 使用可调激光器和简单的无源光栅的组合,可根据波长路由光。Sirius 的交换技术和拓扑与其路由和调度以及新颖的拥塞控制和时间同步机制紧密结合,以实现可扩展但平坦的网络,可提供高带宽和非常低的端到端延迟。通过使用可在 912 ps 内完成调谐的定制可调激光芯片的小型原型,我们展示了 50 Gbps 信道上 3.84 ns 的端到端重构。通过大规模模拟,我们表明 Sirius 的性能接近理想的电交换无阻塞网络,且功耗降低高达 74-77%。
sub:董事会的变更参考:SEBI(LODR)条例的第30条法规,2015年爵士/女士,我们进一步写信给我们的信。日期为11.05.2024,涉及公司董事会的政府提名董事的提名,并告知,就石油和天然气部(MOP&NG)信件而言。CA-31032/1/2021-PNG-37493日期为10.05.2024 [收到13.05.2024],Shri Rohit Mathur [DIN:08216731] MOP和NG秘书已被任命为公司董事会的政府提名董事2024年5月13日。可以证实,Shri Rohit Mathur和Shri George Thomas既不与公司的任何董事有关,也没有因SEBI/任何其他机构的任何命令而被拒之门外。两位董事的简短概况都附在附件 - i。上面是您的信息和记录。感谢您,
在过去的十年中,人们对 DNA 激发态动力学的认识取得了很大进展。[1] 在此背景下,理论研究既集中于单个核碱基的光物理性质,也集中于两个或多个碱基组装体中的相关相互作用,这些研究已成为探索 DNA 激发态衰变机制的有力工具。与单重态激发态相比,我们对三重态激发态的能量和动力学的认识仍然主要局限于单个碱基的性质。[2] 因此,尽管三重态-三重态电子能量转移 (TET) 可以引发 DNA 中的光毒性反应 [3-4],例如胸腺嘧啶环丁烷二聚体的形成 [5],但人们对决定天然 DNA 中三重态命运的核碱基 p 堆叠中 TET 的电子相互作用强度和时间尺度知之甚少。因此,由于三重态激发态的离域程度及其迁移的大致时间尺度存在根本的不确定性,通过超快光谱实验测量的衰变组分的分配仍然是一项艰巨的任务。 [1]
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
为了易于理解PWM生成和延迟生成电路,该应用程序项目涵盖了初始化过程和调整PWM输出波形中上升边缘和降落边缘的步骤,该步骤是从GPT通道0到3的输出。该项目还包括用于用户按钮中断的GPT计时器配置和触发源配置,这些中断用于用户交互。您可以使用此示例配置并根据需要更改不同的设置来触发/结束操作。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
(b),6.000 nm(c),8.900 nm(d)和9.300 nm(e),其中颜色表示不同的局部晶体结构:蓝色-BCC,绿色-FCC,RED-HCP和White-Inninnown; (f)在1860 PS和d = 9.300 nm的纳米线内的应变分布,其中原子是通过其局部剪切应变颜色的。
肥胖症的过度肥胖是2型糖尿病(T2D),非酒精性脂肪肝病和其他心脏代谢性疾病的显着危险因素。脂肪组织的不健康膨胀(AT)导致脂肪生成降低,脂肪细胞高奖章增加,脂肪细胞缺氧,慢性低度插入,效力造成巨噬细胞增加,巨噬细胞增加以及胰岛素抵抗。这最终导致在功能障碍中以抗体脂肪因子分泌降低,例如脂联蛋白和脂肪素,以及增加的脂肪症状脂肪因子(包括RBP4和抵抗素)的分泌增加。脂肪因子分泌中的这种失败者改变了与靶器官的交流的生理状态,包括胰腺B细胞,心脏和肝脏。在胰腺B细胞中,已知脂肪因子对胰岛素分泌,基因表达,细胞死亡和/或去分化有直接影响。例如,促进胰岛素分泌和B细胞身份的脂肪素的隔离受损,导致B细胞衰竭和T2D,从而提出了一个潜在的可药物靶标,以改善和/或保留B细胞功能。心脏组织受到经典的白色AT - 分泌的脂肪因子和(BAT)分泌的Batokines或Lipokines的新识别的棕色的影响,它们改变了脂质沉积和心室功能。在肝脏中,脂肪因子会影响HE-Patic糖异生,脂质积累和胰岛素敏感性,强调了脂肪肝脏交流在非酒精性脂肪肝病发病机理中的重要性。从这个角度来看,我们概述了有关单个脂肪因子对胰腺B-细胞,肝脏和心脏的影响。