时间分辨电子显微镜引起了人们的极大兴趣,可用于研究空间分辨率低于光学衍射极限的超快分子、表面和体积动力学[1–8]。为了实现最佳成像条件,需要精确控制自由电子的发射和传播,这些控制现在也推动了电子-物质相互作用实验[9–14]和显微镜设计[15–18]的进步。对于任何电子显微镜,由于稳定性、相干性以及空间、时间和光谱分辨率之间的权衡,电子发射器和发射机制的选择限制了可实现的成像条件。包含大量电子的短脉冲可用于减少显微镜的曝光时间,并且是生成不可逆动力学的单次图像所必需的,这需要每个脉冲多达 10 9 个电子,但库仑相互作用会展宽大电流脉冲的空间和能量分布,增加像差并降低分辨率[5]。在较长的脉冲中,这些效应会被抑制,大量电子可以在纳秒脉冲包络内传播,同时仍能保持研究相变、反应动力学和蛋白质折叠等过程所需的时间分辨率[19–22]。此外,纳秒脉冲非常适合依赖快速电子门控的仪器,如多通透射电子显微镜[23–25]。这些脉冲可以通过使用光束消隐器及时过滤电子束来产生,也可以通过短激光脉冲触发发射[26]。消隐器通常与连续电子源集成在一起,可以模糊或位移电子束[27]。或者,激光触发需要对电子源进行光学访问,但会引入不同的自由度来控制光发射脉冲的电流、时间持续时间和能量扩展。
ELI-Beamlines 的 P3 装置被设想为一个实验平台,用于多个高重复率激光束,时间范围从飞秒到皮秒再到纳秒。即将推出的 L4n 激光光束线将以 1 次/分钟的最大重复率提供高达 1.9 kJ 的纳秒脉冲。该光束线将为高压、高能量密度物理、热致密物质和激光-等离子体相互作用实验提供独特的可能性。由于重复率高,将有可能在数据统计方面获得显著改进,特别是对于状态方程数据集。纳秒光束将与短亚皮秒脉冲耦合,通过照射背光目标或驱动回旋加速器装置产生高能电子和硬 X 射线来提供高分辨率诊断工具。
本节详细阐述了用于我们的自旋轨道Qudit生成和检测的光学设置。发射器负责秘密密钥生成,如图S2A。 1064 nm纳秒脉冲激光器会产生泵浦脉冲(脉冲宽度约为10 ns)。 因此,泵浦脉冲是由SLM显示的相掩码(大约100 Hz)所显示的,然后通过物镜透镜(×20,NIR增强)聚焦在Ingaasp Microlaser芯片平面上。 通过相同的物镜准确地通过相同的物镜将1547 nm的自旋轨道光子准直并用二分色镜过滤。 由于来自两个空间分离的微孔的自旋轨光子起源,因此这些光子在准直时将有横向动量不匹配。 为了补偿这种不匹配,将由硅/二氧化硅二阶光栅制成的光束组合器放在芯片的傅立叶平面上。 来自两个环的1级衍射梁被合并为单个准梁,这是旋转轨道Qudits的路径。 最后,将中性密度(ND)滤光片合并为充当衰减器,使发射机的弱相干脉冲(WCP)输出能够。S2A。1064 nm纳秒脉冲激光器会产生泵浦脉冲(脉冲宽度约为10 ns)。因此,泵浦脉冲是由SLM显示的相掩码(大约100 Hz)所显示的,然后通过物镜透镜(×20,NIR增强)聚焦在Ingaasp Microlaser芯片平面上。通过相同的物镜准确地通过相同的物镜将1547 nm的自旋轨道光子准直并用二分色镜过滤。由于来自两个空间分离的微孔的自旋轨光子起源,因此这些光子在准直时将有横向动量不匹配。为了补偿这种不匹配,将由硅/二氧化硅二阶光栅制成的光束组合器放在芯片的傅立叶平面上。来自两个环的1级衍射梁被合并为单个准梁,这是旋转轨道Qudits的路径。最后,将中性密度(ND)滤光片合并为充当衰减器,使发射机的弱相干脉冲(WCP)输出能够。
最近发现的具有空间反转不对称性的反铁磁 (AF) 材料的电诱导切换极大地丰富了自旋电子学领域,并为反铁磁 MRAM 概念打开了大门。CuMnAs 是一种具有这种电切换能力的有前途的 AF 材料,并且已经研究使用长度从毫秒到皮秒的电脉冲进行切换,但很少关注纳秒范围。我们在这里演示了使用纳秒脉冲切换 CuMnAs/GaP。我们的结果表明,在纳秒范围内,可以实现低能量切换、高读出信号以及高度可重复的行为,直至单个脉冲。此外,在同一设备上对正交切换和极性切换两种切换方法进行了比较,显示了两种不同的行为,可以选择性地用于不同的未来内存/处理应用。
光致变色分子在光刺激下会改变其物理化学性质,包括吸收光谱、折射率、介电常数和氧化还原电位,具有从光学数据存储到生物成像等多种潜在应用。1–13 光致变色分子的用途可以简单地分为两种类型:作为单分子水平的开关或作为聚集体中的活性元素。具体而言,后者对于开发下一代先进材料非常有趣。例如,聚集体的典型形式之一是晶体。与晶体中的光化学反应相关的单个分子的分子结构变化会导致晶体形状的宏观变化。14–16 这种晶体可用于不需要任何电子线和物理接触的光致动器。聚集体的另一种代表性应用形式是纳米粒子。由光致变色分子和荧光团组成的纳米粒子基于从荧光团到光致变色分子的福斯特共振能量转移,表现出有效的光可逆荧光开/关切换行为。 17,18 这些纳米粒子可用于超分辨率荧光显微镜。此外,最近有报道称,强纳秒脉冲激光激发由
光学主动电信发射器的最新演示表明,硅是固态量子光子平台的引人注目的候选者。尤其是,在常规的热退火后,已在富含碳的硅中显示了称为G中心的缺陷的制造。然而,这些发射器在晶圆尺度上的高收益受控制造仍然需要鉴定合适的热力学途径,从而在离子植入后激活其激活。在这里,我们证明了纳秒脉冲激光退火时高纯硅底物中G中心的激活。该提出的方法通过供应短的非平稳脉冲来实现G中心的非侵入性,局部激活,从而克服了与发射器的结构性亚元能力相关的常规快速热退火的局限性。有限元的分析突出了该技术的强大非平稳性,提供了与常规更长的热处理相对于常规的较长热处理的根本不同的缺陷工程能力,为嵌入在集成光子电路和波导的集成光子电路和波导中的发射器的直接和受控制造铺平了道路。
1. 根据两个发射、两个接收亚纳秒脉冲的要求定制 FPGA 板和 RTL 设计。数量——1。 2. 基于 RTL 的多输入实时相关,具有可调延迟参数。 3. 符合规格或更好的 RF 组件(除非另有说明,所有组件均具有 50 欧姆阻抗)a. 低噪声放大器 (LNA) - UWB 100 MHz 至 5000 MHz,35 dB 增益,+8 dB 输入功率,噪声系数 < 3 dB@2GHz。数量——2。b. RF 放大器/驱动器 - UWB 100 MHz 至 3000 MHz,35 dB 增益,+10 dB 输入功率,输出功率 15 dBm@2GHz,噪声系数 < 3 dB@2GHz。数量——2。c. Vivaldi 天线 – 1000 MHz 至 6500 MHz,SWR < 2.5:1 @2GHz,实现增益 > 7 dBi @2GHz,实现效率 > 90% @2GHz。数量 – 4。4. RF 脉冲接收器的脉冲整形电子设备和发射器的输入调节电子设备。5. GUI 用于控制和监视整个系统的状态。6. 系统应针对 500 ps FWHM UWB RF 脉冲创建(在 FPGA 中)、传输(驱动器)、接收(LNA)和检测(在 FPGA 中)进行开发和优化。4 招标类型 两种投标系统
真正的随机数发生器(TRNG)是许多应用程序的基本构建块,例如密码学,蒙特卡洛模拟,神经形态计算和概率计算。基于低屏障磁体(LBM)的垂直磁性隧道连接(PMTJ)是TRNG的天然来源,但它们倾向于遭受设备之间的变化,低速和温度敏感性的困扰。相反,用纳秒脉冲(表示为随机磁性的随机换能器(智能)设备)操作的中型驻磁铁(MBM)可能是此类应用的优越候选者。我们通过使用1-D Fokker – Planck方程来求解其脉冲持续时间(1 ps至1 ms)的基于MBM的PMTJ(E B〜20-40 K B t)的系统分析作为脉冲持续时间(1 ps至1 ms)的函数。我们研究了电压,温度和过程变化(MTJ尺寸和材料参数)对设备开关概率的影响。我们的发现表明,短期脉冲激活的智能设备(≲1ns)对工艺电压 - 温度(PVT)变化的敏感性要小得多,而消耗较低能量(〜fj)的智能设备比与较长脉冲一起使用的相同能量(〜fj)的敏感性要小得多。我们的结果显示了建立快速,节能和强大的TRNG硬件单元以解决优化问题的途径。
摘要 本文对氨-氧-氮-水混合物中的流光进行了自洽一维建模。开发并验证了一种包含物质输运、静电势和详细化学性质的流体模型。然后使用该模型模拟由纳秒电压脉冲驱动、在不同热化学条件下由一维层流预混氨-空气火焰产生的雪崩、流光形成和传播阶段。成功证实了 Meek 标准在预测流光起始位置方面的适用性。由于电离率不同,流光形成和传播持续时间随热化学条件的不同而存在显著差异。热化学状态还影响击穿特性,通过保持背景减小电场恒定来测试击穿特性。详细的动力学分析揭示了 O(1 D)在关键自由基(如 O、OH 和 NH 2 )生成中的重要性。此外,还报道了 NH 3 的解离电子激发对 H 和 NH 2 自由基产生的贡献。不同热化学状态下各种非弹性碰撞过程的电子能量损失分数的空间和时间演变揭示了燃料解离所消耗的输入等离子体能量以及雪崩和流光传播阶段主要过程的巨大变化。本研究报告的方法和分析对于开发用于氨点火和火焰稳定的受控纳秒脉冲非平衡等离子体源的有效策略至关重要。
将化疗药物如阿霉素 (DOX) 封装在脂质纳米颗粒 (LNP) 中可以克服其急性全身毒性。然而,通过实施安全的刺激响应策略,在肿瘤微环境中精确释放药物以提高最大耐受剂量并减少副作用尚未得到很好的证实。本研究提出了一种集成纳米级穿孔来触发混合等离子体多层 LNP 中的 DOX 释放,该 LNP 由聚集在内部层界面的 5 nm 金 (Au) NP 组成。为了促进位点特异性 DOX 释放,开发了一种单脉冲辐射策略,利用纳秒脉冲激光辐射 (527 nm) 与混合纳米载体的等离子体模式之间的共振相互作用。与传统的 DOX 负载 LNP 相比,这种方法将靶细胞中的 DOX 量增加了 11 倍,导致癌细胞显著死亡。脉冲激光与混合纳米载体相互作用的模拟表明,释放机制由 AuNP 簇附近薄水层的爆炸性蒸发或过热脂质层的热机械分解介导。该模拟表明,由于温度分布高度集中在 AuNP 簇周围,因此在辐射后 DOX 的完整性完好无损,并突显出受控的光触发药物输送系统。