准确稳定的航天器指向是许多天文观测的要求。特别挑战纳米卫星,因为表面积不利 - 质量比和甚至最小的态度控制系统所需的量。这项工作探讨了无执行器精度或执行器引起的干扰(例如抖动)不受限制的机构中对天体物理态度知识和控制的局限性。对原型6U立方体上的外部干扰进行了建模,并根据可用体积内的望远镜的可用恒星量和掌握限制感测知识计算。使用模型预测的控制方案集成了这些输入。对于1 Hz的简单测试用例,具有85毫米望远镜和单个11级恒星,可实现的身体指向预计为0.39弧秒。对于更一般的限制,可以整合可用的星光,可实现的态度感应大约为1毫米秒,这导致了应用控制模型后的20 milliarcseconds的预测身体指向精度。这些结果表明,在达到天体物理和环境限制之前,态度传感和控制系统的重大空间。
来自太空的量子密钥 BMBF 资助的 QUBE 联盟由 LMU 领导,旨在开发和测试使用纳米卫星进行全球安全通信的硬件。通过利用量子态生成密钥,可以实现通过量子加密的安全通信。与由于信号损失而限制在几百公里内的光纤网络相比,卫星可以促进未来多个地面站和卫星之间密钥的全球交换。太空微型高科技 为了有效实现这一目标,光学和量子通信领域的领先研究小组与通信、卫星和航空航天技术领域的创新公司和机构密切合作。该联盟成功开发了生成量子密钥的技术和必要的紧凑组件,以适应一颗非常小的卫星,即立方体卫星。整个模块总重 3.53 公斤,尺寸为 10 厘米 x 10 厘米 x 30 厘米,不大于鞋盒。跨学科研究团队合作 位于维尔茨堡的独立研究机构 Zentrum für Telematik (ZfT) 负责开发和实现相应的小型卫星。“一项特殊的技术挑战是将所需的卫星功能小型化,尤其是高精度指向地面站,以建立稳定的光学链路。在这里,纳米卫星实现了前所未有的姿态精度,”ZfT 总裁 Klaus Schilling 教授强调道。对于 CubeSat 和地面站之间的信息交换,该研究所
摘要:在一些地理条件恶劣的地区(如沙漠、海洋和森林),直接连接到地面网络很困难,因此空间通信是唯一的选择。在这些偏远地区,物联网 (IoST) 应用也可以成功使用。本文提出了用于 IoST 应用的有效载荷,展示了如何有效地使用自动识别系统 (AIS) 和火灾探测系统。基于高效低成本通信的太空任务可以使用一组纳米卫星来更好地满足这一需求。这两个使用一组纳米卫星的应用可以为多个国家提供相关的大学级数据,作为教育计划项目中空间技术转让的有效政策。为了提高教育参与度和对空间技术的兴趣,本文分享了基于对纳米卫星的深入设计以及多项分析(数据预算、链路预算、功率预算和寿命估计)的项目可行性研究的经验教训。最后,本文通过实验重点介绍了用于火灾探测的经济高效的传感器节点的开发和应用,以及使用 GPS 在 IoST 框架中实现 AIS 功能。
本文提出了一个用于纳米卫星地球观察者初步设计技术的通信系统,作为用于管理和事物区域和国家资源各个方面的有用工具。在分析中提出了一个低地球轨道纳米卫星通信系统的设计过程。在拟议的论文中已经制定并解决了下一个目标:审查地球观察系统并研究了他们的设计选项,分析了板载天线设计背景,并提供了分析估计,例如设计通行带正交正交相位移位键盘键合和接收器在Simulink中使用Siming/Mathers a Offers ofer a Offers/Mathers逐步浏览,从而获得了simul shiming/Mathers,该阶段是逐步浏览的,该阶段的偏差范围均为数学范围。研究了它们的特征,观察到并分散了图表,星座和正交相移的信号轨迹,并根据当代设计概念。因此,这允许为纳米卫星类别提供创新的通信系统设计技术。
近年来,太空行业的两个主要主题是向月球任务的复兴,促进了人类在太阳系中的扩展以及立方体发射的迅速增长。月球任务将在可持续太空探索中发挥重要作用。路线图概述了当前和下一代探险家的下一步,并重申了14个太空机构返回月球的兴趣。在过去的十年中,一种更大胆的空间创新方法和低成本小卫星的扩散邀请了商业化,随后加速了微型技术的发展,并大大降低了与立方体相关的成本。在这种情况下,越来越多的立方体被视为低地球轨道以外的开创性任务的平台。本文描述了向月球进行的3U纳米卫星任务,该任务设计为UKSEDS卫星设计竞赛的一部分,能够捕获和分析月球环境的细节。为了实现主要的任务目标,已经包括一个相机和红外光谱仪,以将有关历史悠久的月球标志的信息转移到地球上。该设计的开发是与Open Cosmos的OpenKit集成的,并由SSPI领域的专家进行了审查。本文包括对当前微型工具状态的详细评估以及通过Lunar Cubesat Mission可以实现的科学回报质量。这是对月球群体的整体可行性研究,讨论与立方体技术相关的当前局限性和挑战的讨论以及未来任务的框架。
NASA的Cubesat发射计划(CSLI)为小卫星有效载荷提供了发射机会。 这些立方体作为先前计划的任务或风险投资班发射器的主要有效载荷作为辅助有效载荷飞行。 立方体是一类称为纳米卫星的研究航天器。 要参加CSLI计划,Cubesat调查应与NASA的战略计划和教育战略协调框架一致。 该研究必须解决科学,探索,技术发展,教育或运营的各个方面。NASA的Cubesat发射计划(CSLI)为小卫星有效载荷提供了发射机会。这些立方体作为先前计划的任务或风险投资班发射器的主要有效载荷作为辅助有效载荷飞行。立方体是一类称为纳米卫星的研究航天器。要参加CSLI计划,Cubesat调查应与NASA的战略计划和教育战略协调框架一致。该研究必须解决科学,探索,技术发展,教育或运营的各个方面。
“这是内罗毕大学 (UoN) 继续进行纳米卫星能力建设的绝佳机会,这对肯尼亚新兴的太空领域来说是一个巨大的利好。作为一个联盟,我们非常感谢联合国外空事务办公室和 Avio SpA 给予我们免费发射 3U 立方体卫星的机会。这将大大提高 UoN 乃至整个肯尼亚的航天器工程和卫星运行能力。NaSPUoN-0GPM2030 纳米卫星将预示肯尼亚的太空利用达到一个新的水平,并将包括一项地球观测任务,以展示和满足当地多样化的地球图像需求。这次机会巩固了 UoN 与肯尼亚航天局、亚利桑那大学和太空信托基金合作的巨大影响,我们将共同努力实现 NaSPUoN-0GPM2030 任务”
气候行动是实现可持续发展的关键要素之一。在高空测量上述大气参数可以做出更好的预测。通过使用纳米卫星,可以记录这些参数,甚至可以计算出来。实时数据可以快速提供给用户进行进一步分析。CANSAT 可能是一种纳米卫星,集成在小罐子的数量和形状中。我们的挑战是将卫星中发现的所有主要子系统(如电源系统、传感器和通信系统)装入这个最小体积中。然后,CANSAT 通过火箭发射到几百米的高度,进行科学实验,并使用降落伞安全着陆。Arduino 是一个开源、易于使用的硬件和软件。LoRa SX1278 Ra-02 模块用作从太空到地面站通信的发射器和接收器。记录的数据还存储在 SD 卡模块中。CANSAT 必须开发成能够在几百米的空中维持一段时间。它使用 9v 电源。整个系统的设计目标是确保负载不超过 500 克。CANSAT 系统中使用的模块非常灵敏,可以监测大气参数的最小变化。
纳米卫星及其组件立方体卫星平台及其技术功能是航天领域科学、商业和军事应用的重要组成部分。为了满足立方体卫星平台的主要技术方面,重要的是开展研究和开发过程以改进现有子系统的通信和信息交换子系统。虽然现有立方体卫星平台中广泛使用的射频 (RF) 通信试图通过高频波段传输日益增加的信息量,但现有许可证碎片化、大气障碍源以及发射机和接收机系统的能量和尺寸要求等挑战阻碍了这一过程。作为一种解决方案,可以展示在地面系统中广泛使用的光通信 (OC) 网络在太空中的应用。沿着在这方面开发的主题研究了立方体卫星平台中使用的 OC 系统,并研究了具有激光束控制和主动应答器系统的纳米卫星子系统的操作软件算法,其中包括该技术的优势。