Atakan Büke Leipzig University, Germany Berenice Juárez López Autonomous University of Coahuila, Mexico Bushra Usman Foreman Christian College University, Pakistan Ceren Gülser İlikan Rasimoğlu Acıbadem Acıbadem University Zacatecas, Mexico Derya Nizam Izmir Economy University, Turkey Ece Zeybek Yilmaz开发大学,土耳其édgarRamon Arteaga figueroa拉丁美洲纳米技术与社会网络(Relans),墨西哥Erhan Ustaoglu Marmara大学,土耳其Esrake Istanbul Istanbul Medeniyet大学,土耳其Zacatecas,墨西哥Kateryna Tryma Inst。 H. edu。 nat。 A. of Edu Sci。 <乌克兰,乌克兰Atakan Büke Leipzig University, Germany Berenice Juárez López Autonomous University of Coahuila, Mexico Bushra Usman Foreman Christian College University, Pakistan Ceren Gülser İlikan Rasimoğlu Acıbadem Acıbadem University Zacatecas, Mexico Derya Nizam Izmir Economy University, Turkey Ece Zeybek Yilmaz开发大学,土耳其édgarRamon Arteaga figueroa拉丁美洲纳米技术与社会网络(Relans),墨西哥Erhan Ustaoglu Marmara大学,土耳其Esrake Istanbul Istanbul Medeniyet大学,土耳其Zacatecas,墨西哥Kateryna Tryma Inst。H. edu。 nat。 A. of Edu Sci。 <乌克兰,乌克兰H. edu。nat。A. of Edu Sci。 <乌克兰,乌克兰A. of Edu Sci。<乌克兰,乌克兰
肌肉疾病,包括糖尿病性视网膜病(DR)和与年龄相关的黄斑变性(AMD),显着影响全球视觉健康,从而导致视力受损和不可逆的失明。由于存在多个生理和解剖障碍,将药物输送到眼后部分仍然是一个挑战。常规的药物输送方法通常证明是有效的,可能会引起侧面影响。纳米材料,其特征是其小尺寸,较大的表面积,可调节性能和生物相容性,可增强药物的渗透性,稳定性和靶向。眼纳米材料包括较大范围,包括脂质纳米材料,聚合物纳米材料,金属纳米材料,碳纳米材料,量子点纳米材料等等。这些创新的材料,通常与水凝胶和外泌体结合,设计用于解决多种机制,包括巨噬细胞极化,活性氧(ROS)清除和抗血管内皮生长因子(VEGF)。与常规方式相比,纳米医学可以实现受调节和持续的递送,降低给药频率,延长药物作用以及最小化的侧面影响。这项研究深入研究了在药物传递到后段中遇到的障碍,并突出了纳米医学促进的进展。前瞻性地,这些发现为下一代眼药输送系统和更深入的临床研究铺平了道路,旨在重新治疗,减轻患者负担,并最终在全球范围内改善视觉健康。
科学技术的发展鼓励在各个领域,尤其是通过学术创新。在2010年,安德烈·吉姆(Andre K.使用胶带和石墨。石墨,称为纳米技术;卓越具有导电性,强大和弹性的特性,这些出色的特性使石墨机成为具有巨大使用构建活动的材料,例如桥梁的钢丝绳。NASA计划使用石墨烯升至太空;因为他的力量。这项研究分析了来自Google Scholar,Dimension和ResearchGate等各种来源的出版物,探索了石墨烯及其衍生物的属性,以改善复合水泥和未来建设的特性。具有与石墨烯相同的基本特性,氧化石墨烯(GO)也能够提高混凝土的压缩,拉伸和延性强度,减少裂纹,提供电导率,增加耐腐蚀性并提高混合物混合物的可工具性。尽管其在施工中的使用具有克服未来建筑问题的巨大潜力。但是,要能够在建筑活动中使用石墨烯,它仍然需要大量的开发和研究。
摘要这篇简短的评论文章,标题为“利用纳米技术和人工智能在智能城市中进行精确农业”,深入研究了纳米技术,人工智能(AI)和精确农业的融合,以推动与联合国2030年可持续发展目标保持一致的可持续农业。它聚焦了纳米技术的变革潜力,包括天然和人造的纳米颗粒,以增强作物的生长并减轻环境影响。纳米肥料和纳米农药被公布为优化营养可用性的有前途的策略,同时最大程度地减少对生态系统的损害。由尖端的纳米信息学支持了AI的整合到精确农业中,作为建立安全可持续的农业实践的关键,成为了智能和有韧性的农业。但是,由于这种综合方法加速了进步,并为应对当代农业挑战提供了重要见解,因此这也强调了仔细研究纳米技术对土壤微生物群落和植物健康的影响的重要性。纳米颗粒的植物毒性取决于大小,浓度和植物物种,需要进一步检查。总而言之,这篇全面的文章呼吁跨学科的合作,以充分利用纳米技术和人工智能在改变农业方面的潜力,同时确保环境和人类健康的维护,并在2030年到2030年在智能城市中推进全球农业可持续性议程。
摘要 — 在电路设计领域,与传统的基于晶体管的逻辑相比,场耦合纳米技术 (FCN) 等新兴技术提供了独特的机会。然而,FCN 也带来了一个关键问题:线路交叉对电路稳健性的重大影响。这些交叉要么无法实现,要么会严重降低信号完整性,对高效电路设计造成重大障碍。为了应对这一挑战,我们提出了一种新方法,专注于减少 FCN 电路中的线路交叉。我们的方法引入了 LUT 映射和分解的组合,旨在在逻辑综合过程中产生有利的网络结构,以最大限度地减少线路交叉。这个新的优化指标优先于节点数和关键路径长度,以有效应对这一挑战。通过实证评估,我们证明了所提出方法的有效性,可将线路交叉的第一次近似值降低 41%。69%。这项研究为推进新兴电路技术中的线路交叉优化策略做出了重大贡献,为后 CMOS 逻辑时代更可靠、更高效的设计铺平了道路。
纳米医学是纳米技术在医疗保健中实现创新的应用。它使用材料在其纳米尺度上开发的属性,在物理,化学或生物学方面通常从同一材料上以更大的规模有所不同。此外,纳米尺寸也是人体中许多生物学机制的规模,允许纳米颗粒和纳米材料可能跨越自然障碍,以进入新的递送位点,并在器官,组织或细胞内或在血液中或内部或内部与不同水平的DNA或小蛋白质相互作用。因此,纳米医学有可能实现早期检测和预防,并大大改善许多疾病的诊断,治疗和随访,包括代谢和炎症性疾病等。»代谢和炎症性疾病中的晚期纳米医学:发育和应用涵盖了纳米颗粒制备,表征和功能化的领先和新兴技术。该主题描述了许多技术和程序,用于制备不同性质的纳米颗粒,包括有机(脂质,聚合物等)和无机(磁铁矿,硅,金等)。将向学生介绍将纳米颗粒功能化的生物医学应用功能化的方法,包括用于特定细胞/组织靶向和药物或RNA递送的功能化。此外,还将描述纳米颗粒的最新生物医学应用,特别注意它们在代谢AD炎性疾病的诊断和治疗中的使用。
Nano World 2025 邀请世界各地的个人参加以“揭开材料科学和纳米技术研究的最新进展”为主题的著名会议。其目的是促进纳米领域的医生、教授、科学家和学生等专业人士之间的知识肯定和新思想交流。该活动是一个分享研究经验、参与讨论和参加各种先进材料和纳米技术主题会议的平台。它还为公司和机构提供了展示其服务、产品、创新和研究成果的机会。如果您的组织有兴趣参加,请表达您的兴趣。会议提供根据您的兴趣量身定制的计划,包括交流机会、前沿演讲、小组讨论和与来自不同背景的演讲者的互动会议。这个令人兴奋且信息丰富的会议包括主题演讲、口头会议、座谈会、研讨会、海报展示和为来自世界各地的参与者设计的各种计划。
老龄化人口的现象正在以急剧的速度前进。阿尔茨海默氏病(AD)和帕金森氏病(PD)是两种最常见的与年龄相关的神经退行性疾病,这两种疾病主要以有毒蛋白的积累和神经元结构的逐渐消亡为特征。关于脑淋巴引流系统的最新发现已经促成了越来越多的研究,证实了其新作用,包括清除大分子废物和免疫细胞的运输。值得注意的是,水通道蛋白4介导的淋巴转运对于维持神经稳态至关重要,在衰老过程中受到破坏,并且在AD和PD的发病机理中进一步损害。功能性脑膜淋巴管有助于脑脊液排出到深宫颈淋巴结中,在桥接中枢神经系统中具有周围免疫反应的桥接。这些脑膜淋巴管中的功能障碍加剧了与年龄相关的神经退行性疾病的病理轨迹。本评论探讨了淋巴系统和脑膜淋巴管对衰老脑及其相关神经退行性疾病的调节作用。它还封装了靶向非药物干预措施的潜在机制和前景的见解。
微电子与纳米技术 Shamsuddin 研究中心 (MiNT-SRC) 是马来西亚敦胡先翁大学 (UTHM) 综合工程学院 (IIE) 下属的五个卓越中心 (CoE) 之一。该研究中心成立于 2006 年 11 月 27 日,前身为微电子与纳米技术中心 (MiNTEC),2007 年 11 月 25 日升级为研究卓越中心。MiNT-SRC 以 UTHM 董事会主席 Y.Bhg. Tan Sri Dato' Seri Ir Shamsuddin bin Abdul Kadir 的名字命名,以纪念他对 UTHM (2007-2009) 的贡献。MiNT-SRC 的目标是成为马来西亚南部微电子和纳米技术领域的领先研究中心。该研究中心由副教授 Marlia Morsin 博士领导,她从事基于纳米材料的传感器、真菌治疗和媒介控制领域的研究。此外,还有6名来自不同领域的首席研究人员,分别是Nafarizal Nayan教授(纳米等离子体处理和诊断)、Mohd Khairul Ahmad教授(纳米结构材料)、Soon Chin Fhong副教授(生物纳米技术、生物工程和物联网)、Fariza Mohamad副教授(使用电沉积的同质和异质结薄膜)、Farhanahani Mahmud副教授(医疗电子、嵌入式系统和人工智能)和Nur Hanis Hayati Hairom副教授(纳米技术、膜技术和废水处理)。这七位核心研究人员构成了MiNT-SRC研究进步的骨干。
摘要:疟疾对人类健康构成了全球威胁,每年有数百万人死亡,主要影响热带和亚热带地区的发展中国家。疟疾的病因是疟原虫物种,通常以雌性肛门的造血作用传播。蚊子。与疟疾作斗争的主要方法是通过药物治疗消除寄生虫,并防止通过载体控制传播。但是,对媒介和对当前策略的抵抗力引起了挑战。响应药物疗效的丧失和农药的环境影响,重点转移到寻找可能是抗疟疾的生物相容性产品。植物衍生物在传统医学中具有千禧一代的应用,包括疟疾的治疗,对寄生虫和蚊子表现出有毒作用,除了可以使用和负担得起。其缺点在于给药的类型,因为绿色化学化合物迅速降解。这些化合物的纳米成型可以提高生物利用度,溶解度和功效。因此,基于纳米技术的植物产品的开发代表了与疟疾作斗争的相关工具。我们旨在回顾纳米颗粒与植物提取物合成的纳米颗粒对止血物和疟原虫合成的作用,同时概述纳米技术绿色合成和当前的预防疟疾预防策略。