1 北京理工大学机电学院,北京 100081 2 先进加工技术研究中心,北京 100081 * 电子邮件:heleibuaa@126.com,xucg@bit.edu.cn 收稿日期:2020 年 2 月 2 日 / 接受日期:2020 年 3 月 22 日 / 发表日期:2020 年 5 月 10 日 以硫酸锰和高锰酸钾为原料,CTAB 为表面活性剂,采用简单沉淀法合成 MnOOH 纳米棒,并以此为前驱体制备 Mn2O3 纳米棒。通过超声显微镜和电化学测试等各种物理化学实验对 Mn2O3 纳米棒的结构和性能进行了全面研究。 X 射线衍射、扫描电镜和透射电镜观察表明 Mn 2 O 3 结晶性良好,具有均一的棒状形貌,纳米棒的宽度和长度分别为 200~300 nm 和 2~4 μm。进一步分析该材料的电极性能发现,将其用作锂离子电池负极材料在 0.1C 倍率下可获得 1005 mAh·g -1 的二次放电容量。关键词: MnOOH;负极材料; Mn 2 O 3;锂离子电池。1.引言
©2020。此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,请引用TSPACE版本,此外已发布
co 3+ -o-v 4+在Covox纳米棒中的簇,以提供高效且稳定的电化学氧气进化chaoran Jiang,Ji Yang,Ji Yang,Tingting Zhao,Lunqiao Xiong,Zheng-Xiao Guo,Yujing Ren,Yujing Ren,Haifeng Qi,Haifeng Qi Qi Qi Qi Qiiia d. Xiong,Junwang Tang教授化学工程系,伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国。电子邮件:junwang.tang@ucl.ac.uk tingting Zhao博士,Zheng-Xiao Guo教授,伦敦大学学院化学系,英国WC1H 0AJ,伦敦戈登街20号。 香港香港大学的化学系;中国公关杭州研究与创新研究所HKU Zhejiang。 Chaoran Jiang博士,Ji Yang,Yujing Ren博士,Haifeng Qi,Aiqin Wang State催化局主要实验室,达利安化学物理研究所,中国科学院,达利安,达利安,116023,中国。 电子邮件:aiqin.wang@dicp.ac.cn关键字:CO 3+ -O-V 4+群集,纳米棒,电催化剂,氧气进化,稳定性,稳定性电子邮件:junwang.tang@ucl.ac.uk tingting Zhao博士,Zheng-Xiao Guo教授,伦敦大学学院化学系,英国WC1H 0AJ,伦敦戈登街20号。香港香港大学的化学系;中国公关杭州研究与创新研究所HKU Zhejiang。 Chaoran Jiang博士,Ji Yang,Yujing Ren博士,Haifeng Qi,Aiqin Wang State催化局主要实验室,达利安化学物理研究所,中国科学院,达利安,达利安,116023,中国。 电子邮件:aiqin.wang@dicp.ac.cn关键字:CO 3+ -O-V 4+群集,纳米棒,电催化剂,氧气进化,稳定性,稳定性香港香港大学的化学系;中国公关杭州研究与创新研究所HKU Zhejiang。Chaoran Jiang博士,Ji Yang,Yujing Ren博士,Haifeng Qi,Aiqin Wang State催化局主要实验室,达利安化学物理研究所,中国科学院,达利安,达利安,116023,中国。 电子邮件:aiqin.wang@dicp.ac.cn关键字:CO 3+ -O-V 4+群集,纳米棒,电催化剂,氧气进化,稳定性,稳定性Chaoran Jiang博士,Ji Yang,Yujing Ren博士,Haifeng Qi,Aiqin Wang State催化局主要实验室,达利安化学物理研究所,中国科学院,达利安,达利安,116023,中国。电子邮件:aiqin.wang@dicp.ac.cn关键字:CO 3+ -O-V 4+群集,纳米棒,电催化剂,氧气进化,稳定性,稳定性
金纳米棒(Aunrs)由于表面等离子体共振的独特特征,最近在感应和检测应用领域受到了极大的关注。Aunrs的表面修饰是有效利用其特性的必要途径。在本文中,我们既专注于证明Aunrs表面功能化方法的最新进展,又要证明它们使用各种技术来改善感应性能。讨论的主要表面修饰方法包括配体交换,并有助于硫醇基团,层组装方法以及具有所需表面和形态的无机材料。涵盖的技术随后可用于使用这些功能化的aunr,包括色素感应,折射率感测和表面增强拉曼cacttrater的感应。最后,考虑了改善表面修饰的未来发展的前景,以改善感应性能。
旋转过渡材料对于开发可拍照的设备具有吸引力,但它们的慢速材料转换限制了设备的应用。尺寸降低可以更快地切换,但是纳米级的光诱导动力学仍然鲜为人知。在这里,我们报告了一个飞秒光泵多模式X射线探针研究的聚合物纳米棒。同时使用X射线发射光谱和X射线衍射的结构跟踪自旋过渡顺序参数,我们观察到在〜150个飞秒范围内的低自旋晶格的光接头。高于A〜16%的光接头阈值,在分配给纳米棒中激活分子自旋开关的振动能量重新分布的孵育周期后,向高旋转期发生过渡。高于〜60%的光接头,孵育周期消失,过渡在〜50 picseconds之内完成,此前是弹性纳米棒的膨胀,响应于光启动。这些结果支持基于旋转材料的GHz光学切换应用的可行性。
图3:AU@MSIO 2纳米棒上的FDTD模拟。(a)模拟的例证。将带有波形k的p偏振ELD e注射在玻璃盖玻片上的Au@MSIO 2纳米棒上。源角度φ被视为⃗k和ˆ之间的角度。电动ELD在纳米棒的底部进行监测。(b,c)吸收(b)和散射(C)在532 nm处的横截面作为源角度的函数。纳米棒的面向(黑圆圈),如面板(a)或面向s的(绿色三角形)。TIRF的临界角度为61°。(d,e)电气强度| e | 2标准化为事件ELD强度| E 0 | 2在532 nm处,在Au纳米棒的底部监测的源角度为70°。如面板(a)或面向s的(e),纳米棒的定向(d)。
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,
摘要:贵金属纳米粒子蒸发自组装成有序结构具有成本低、效率高、操作简便等优点,在光学和等离子体器件的制备中具有广阔的应用前景。然而,对马兰戈尼流的难以控制是实现明确组装的挑战之一。在此,基于蒸发强度对组装影响的理论分析,设计了两个简单但可靠的流场控制平台来控制蒸发微流并与耗尽力同时作用,以实现金纳米棒的受控自组装。通过设计的毛细管中的强单向微流实现了取向有序组装,通过在自制玻璃池中产生的弱对流获得了单层膜的器件规模组装。由于自发对称性破坏或存在缺陷(如表面台阶和螺旋位错),可以得到形态多样的超结构组装体,如球晶状、边界扭曲、手性螺旋组装体和具有 π 扭曲畴壁的融合膜。进一步揭示了这些组装体的光学各向异性和偏振相关行为,这意味着它们在等离子体耦合装置和光电元件中具有潜在的应用。了解熵驱动的组装行为和控制蒸发微流来引导金纳米棒的自组装,可以深入了解一般的自下而上的方法,这种方法有助于构建复杂而坚固的纳米超结构。关键词:结构调节、取向排序、大面积、自组装、蒸发微流