§ 这些作者对本研究的贡献是相同的。 *通讯作者。电子邮件:govorov@phy.ohiou.edu、qbwang2008@sinano.ac.cn、m.hentschel@pi4.uni-stuttgart.de、na.liu@kip.uni-heidelberg.de
摘要:高效的光能转换在很大程度上取决于光生载流子的累积级联效率。空间异质结对于定向电荷转移至关重要,因此具有吸引力,但仍是一个挑战。本文展示了一个系统中的空间三元钛缺陷 TiO 2 @碳量子点@还原氧化石墨烯(表示为 V Ti @CQDs@rGO)表现出电荷的级联效应,并在光电流、表观量子产率和光催化(例如水分解和 CO 2 还原产生 H 2 )方面表现出显著的性能。构建中的一个关键方面是 Ti 空位和纳米碳在空间内外异质结方面的技术不合理连接。在原子/纳米尺度上提出新的“空间异质结”概念、特征、机理和外延,阐明合理异质结的生成以及级联电子转移。关键词:钛空位、空间异质结、级联效应、海水分解、二氧化碳还原
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
我们探索纳米光谐振器中的光学参数振荡(OPO),实现了任意,非线性相匹配和对能量转化的几乎无损控制。这种原始的Opo激光转换器由非线性光 - 物质相互作用确定,使它们在技术上灵活且可广泛地重新配置。我们在谐振器中利用纳米结构的内壁调制来实现Opo-Laser转换的通用相位匹配,但是相干的反向散射也诱导了反向传播的泵激光。这将沿任一方向耗尽了助筋的光学功率,从而增加了OPO阈值功率和限制激光转换效率,目标信号中的光电功率和怠速频率与泵的比率。我们开发了该系统的分析模型,该模型强调了对最佳激光转换和阈值行为的理解,并且我们使用该模型指导实验纳米结构响应器OPO激光转换电路,完全集成在芯片上,并由集体速度分散分散。我们的字母证明了Opo激光转换效率与谐振器耦合速率之间的基本联系,但要受反向传播泵场的相对相和功率的影响。我们实现了片上功率的ð404ÞMW,对应于41 41%的转换效率,并发现通往近乎统一的OPO激光转换效率的路径。
肽和蛋白质分别是氨基酸的短链和长链。表达的肽和蛋白质在生物学变异中起着重要而突出的作用,包括控制代谢,调节骨骼代谢,清除自由基,改变睾丸激素水平以及对某些疾病的治疗[1-6]。令人惊讶的是,只有二十个基因编码的氨基酸是自然界中发现的肽的基础,可以将其分为两个主要类别的亲水性和疏水性氨基酸。如方案1所示,ALA,Val,Leu,Ile,Met,Phe,Phe,Tyr和TRP的非极性烃链使它们成为亲脂性,疏水性氨基酸。虽然官能团的存在,例如羟基,酰胺,吡唑,鸟苷,胺,羧酸和硫醇,导致SER,THR,THR,THR,ASN,ASN,GLU,HIS,HIS,LYS,LYS,LYS,LYS,LYS,ASP,ASP,GLU,GLU,GLU,GLU,GLU,GLY,GLY,GLY和CYS的亲水性能(方案2)。这些氨基酸的排列共同导致具有不同亲水性,疏水性或两亲性特性的肽折叠[7]。
目前,聚合物基湿度传感器面临诸多限制,包括合成能耗高、灵敏度低和响应时间慢。本研究提出了一种创新方法来克服这些挑战,该方法基于一种强大的全水基原位微乳液聚合。整个过程中使用水可减轻对环境的负面影响。选择用浓度范围为 0.2-1.0 wt% 的还原氧化石墨烯 (rGO) 增强的硫醇烯聚合物来制造这些化学电阻传感器。所选硫醇烯具有高疏水性和半结晶性质,表明即使长时间暴露在潮湿环境中也能抵抗早期分层。加入 rGO 不仅可以赋予复合膜导电性,还可以增强复合膜的机械和防水性。0.6% rGO 复合材料表现出最佳的湿度传感电阻,在三个暴露周期中对 800-5000 ppm 的水蒸气浓度表现出快速而一致的响应。此外,该传感器对水蒸气的选择性优于甲苯、丙醇和 4-甲基-2-戊醇,这归因于水性薄膜的高表面亲水性和固有孔隙率,以及基质内 rGO 薄片的网络结构。总之,这项研究开创了一种基于聚合物的湿度传感新方法,解决了关键限制,同时提供了更高的灵敏度、快速的响应时间和卓越的选择性。
近年来,人们对使用金属纳米结构来控制纳米级的温度越来越感兴趣。在其等离子共振下照明下,金属纳米颗粒具有增强的光吸收,将其变成理想的纳米源热源,可通过光远程控制。这个简单的方案是基于纳米科学社区中众多积极的研究活动和应用。在这里,我们回顾了这种热量等法的所谓领域的最新进展。我们首先描述了在连续或脉冲照明下的金属纳米颗粒中热产生的物理学。然后,我们提出了已经开发出来的实验和理论方法,这些方法是为了进一步理解和设计纳米级的等离子辅助加热过程。最后,我们回顾了一些基于金纳米颗粒产生的热量,即光热癌疗法,纳米疗法,药物输送,光热成像,蛋白质跟踪,光声成像,纳米化学化学和光化合物。
使它们适合于纳米素质,纳米传感,纳米电子等学科等。[5]。有许多类别的纳米线,根据其组成,结构和特性进行分组。•半导体纳米线:这些是使用硅,硝酸盐或氧化锌等半导体材料生产的,并在电子和光子学中广泛使用,用于半导体,太阳能电池,太阳能电池和光发射diodes(LEDS)等。[6]。•金属纳米线:这些由金,银或铜等金属元素组成,并用于导电电极/膜等应用中,作为化学过程的催化剂等。[7]。•氧化物纳米线:这些纳米线是使用金属氧化物(如二氧化钛或氧化铁)产生的,并用作传感器,催化剂和基于能量的储存电子[8]。•碳纳米管:具有类似于纳米线的特性的空心纳米结构。他们在电子,材料科学和生物医学工程中有应用[9]。•混合纳米线:这些由不同的
干气溶胶沉积 (DAD) 是一种新兴的增材制造喷涂工艺,可直接从干粉构建完全致密的纳米结构陶瓷涂层和低轮廓 3D 结构,而无需粘合剂或流体介质。由于 DAD 依靠冲击动能而不是热量进行致密化,因此功能陶瓷可以直接沉积在聚合物以及陶瓷和金属基材上。本演示将介绍我们在定制沉积系统中使用的两种截然不同的陶瓷原料粉末的一些结果:1.钛酸钡钕,一种用于 RF/微波通信的高 K 微波电介质,以及 2.模拟月球风化层,用于原位资源利用 (ISRU) 和太空制造。
作者:N LAGOPATI · 2021 · 被引用 22 次 — 诊断、预防和治疗。二氧化钛纳米颗粒 (TiO2 NPs) 具有广泛的光催化抗菌和抗癌作用...