摘要 — 随着不稳定的可再生能源发电和网络物理中断的日益普及,确保大容量电力系统的安全运行已变得前所未有的具有挑战性。由于通信和计算成本限制了集中式系统调度只能每隔几分钟调用一次,而且纯本地方案已被证明是不够的,因此人们提倡使用分布式控制来实时处理意外的系统状况。然而,分布式控制方案的适用性从根本上受到其需要广泛通信和模型认知的限制。在这种情况下,我们提出了一种混合、低通信、饱和驱动的协议,用于协调分布在物理系统上的控制代理,并允许通过“热线”通信网络与对等代理通信。根据该协议,当代理根据本地测量观察到约束违规时,它们会在本地做出响应,直到其控制资源饱和,在这种情况下,它们会向对等代理发送信标以寻求帮助。该方案确保通过快速的本地控制有效缓解轻微违规行为,而严重违规行为则可以通过相对较小的代理集之间的协作来处理。我们通过 IEEE 14 总线测试馈线上的数值测试来评估该方案的性能,其中代理在负载变化和严重低压/高压事件的各种场景下根据噪声测量采取行动。
背景:一种可靠的生物标志物来识别负责产生癫痫发作的皮质组织以指导癫痫的预后和治疗。组合的尖峰波纹事件是癫痫组织的有前途的生物标志物,目前需要专家审查才能准确识别。本专家审查是耗时且主观的,限制了可重复性和高通量应用程序。新方法:为了解决此限制,我们开发了一种用于尖峰纹波检测的完全自动化方法。该方法由一个卷积神经网络组成,该卷积神经网络训练以计算频谱图像包含尖峰纹波的概率。结果:我们在专家标记的数据上验证了所提出的尖峰纹波检测器,并表明该检测器准确地分离了具有低癫痫发作风险的受试者。与现有方法的比较:所提出的方法以及需要手动验证候选尖峰纹波事件的现有方法。引入完全自动化的方法可降低主观性,并增加此癫痫生物标志物的严格性和可重复性。结论:我们介绍并验证了完全自动的尖峰纹波探测器,以支持在临床和翻译工作中使用该Epilepsy Biomarker的利用。
*)如果充电器未连接到主电源,则后电流流量是排干电池的电流。CTEK充电器的后背电流非常低。**)充电电压和充电电流的质量非常重要。高电流纹波会加热电池对正电极的老化影响。高压波纹可能会损害连接到电池的其他设备。CTEK电池充电器可产生非常干净的电压和低纹波的电流。
VREF 输出电压 Vref 与 IP 输入电流值无关 2.5 V 差值零点偏差 Voq-VREF IP=0A ±5 mV 灵敏度 Sens -2.5A
整流桥由二极管D2、D3、D4、D5组成。经滤波电容C4、直流电压TS、初级开关管Q1、储能电容C4,反激式功率变换器将能量经变压器T1、二极管D5、电感L1和电容C2整流滤波后输出直流电压。变换器工作时,通过改变PWM的占空比,来调节输出电压[2][3]。电源正常工作时,C4中流过交流纹波电流,从而形成交流纹波电压。当发生过流或短路时,电容电压处的电压纹波会急剧增大。根据开关功率变换器的特性,可确定电源的工作状态,并根据交流分量增量的大小来设置不同交流分量保护点的高低,完成短路保护电路的设计[4][5][6]。
表 4 的注释:1. 必须注意适当的电流降额,以将结温保持在最高允许结温以下。2. 如果满足以下条件,则由于电源从交流 (AC) 转换为直流 (DC) 而产生的残余周期性变化(也称为“纹波”)是可以接受的: – 纹波电流的频率为 100Hz 或更高 – 每个周期的平均电流不超过最大允许直流正向电流 – 纹波的最大幅度不超过最大峰值脉冲正向电流 3. 占空比 ≤ 50%,脉冲宽度为 5 毫秒。4. 如果这些事件的持续时间不超过 10 毫秒,反向电压的幅度不超过 5V,反向电流小于 220uA,则由于电气开关或电源中断而产生的瞬态反向电压和浪涌电流是可以接受的。5. 最长 10 秒的最大 5V 反向电压是可接受的使用寿命开始的一次性测试条件。
实验 注意:至少要进行五个实验 1. 绘制 Si PN 结二极管的正向/反向特性。 2. 绘制齐纳二极管的正向/反向特性 3. 研究并绘制齐纳二极管作为稳压器的特性 4. 研究半波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 5. 研究全波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 6. 研究桥式整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 7. 画出 CE 配置中 npn 晶体管的输入输出特性曲线 8. 画出 CB 配置中 npn 晶体管的输入输出特性曲线 9. 画出 JFET 的漏极和传输曲线 10. 研究 OPAMP (741) 并计算 (i) 反相模式和 (ii) 非反相模式下的增益
三电平降压(TLB)转换器与连续导通模式(CCM)的降压转换器相比,具有电压转换效率高、电感电流纹波、输出电压纹波和开关管电压应力小等特点。将TLB转换器集成在芯片上,由于电感较小、负载变化较大,无法避免其以非连续导通模式(DCM)工作。本文介绍并讨论一种采用65nm CMOS工艺实现的DCM模式下TLB转换器的分析、设计和控制。晶体管级仿真结果表明,当TLB转换器工作在100MHz、片上电感5nH、输出电容10nF、输出电容10nF时,输入电压为2.4V,输出转换范围为0.7~1.2V,峰值效率为81.5%@120mW。当 I OUT ¼ 10 – 100 mA 时,输出负载瞬态响应为 100 mV,下冲为 101 ns,过冲为 86 mV,上冲为 110 ns。最大输出电压纹波小于 19 mV。
摘要 — 传统的降压调节器提供高效率和低功耗的稳定输出电压。通过放置双栅极 (DG) MOSFET,可以改善该调节器的各种参数。双栅极 MOSFET 提供两倍的漏极电流,这改善了降压调节器结构的各种参数,并不可避免地提高了器件的性能和效率。在本研究工作中,已经通过实施的 DG MOSFET 降压调节器分析了这些参数,并实现了总损耗 42.676 mW 和效率 74.208%。本研究设计了一种基于 DG MOSFET 的降压调节器,其规格为输入电压 12 V、输出电压 3.3 V、最大输出电流 40 mA、开关频率 100 kHz、纹波电流 10% 和纹波电压 1%。