另一方面,在欧洲,每年每年产生约15公斤的纺织废物(欧洲环境局,2024年)。纺织工业被评估为在2020年导致水退化和土地替代的第三大工业,并导致全球碳排放量的10%(欧洲议会,2020年)。上游(纤维生产和制造)被认为是造成这种排放量的70%的原因。在当前趋势上,到2030年,时装业估计将产生约21亿吨CO2,这几乎是巴黎协定中设定的1.5度途径的目标限制的两倍(全球时尚议程和麦基西,2021年,第2021页,第2021页,pp。5,9)。麦肯锡公司的报告(2022)提到了纺织品回收为重要的解决方案,因为这可能会影响上游排放(来自材料生产)和寿命终止浪费挑战。近年来,孟加拉国占据了欧盟服装进口市场的22.2%,成为欧盟第二重要的服装进口来源(Uddin,2023)。
• 制定制定服装、资源和污染预算或限制的方法。有机会从其他领域学习,例如碳预算和捕鱼配额制度。这些预算的制定需要与地球边界和其他现有的气候和可持续性政策明确联系,对话需要告知这些预算可以在什么水平、规模和形式上被考虑和应用。应用选项可以基于资源使用减少目标或基于消费的排放目标,或两者结合。目标将从自愿开始,以建立变革的能力和意识,但也应明确规定强制应用的途径和时间表。
今天,由于旋转速度高和生产线的简单性,聚合物的融化和湿旋转是制造商业合成纤维的最常用方法。正在进行的研究工作确保纤维和纺织品仍然是高增值产品。本期特刊旨在收集有关纤维融化和湿旋转领域最新进展的贡献。感兴趣的主题是新型聚合物,添加剂和可用于熔体和湿旋的过程;多组分旋转;喂食线,旋转链或下降单元的特殊设计;旋转不稳定性;物理和化学表征;以及合成纤维的应用。除了实验结果,理论贡献和模拟研究外,还阐明了纤维旋转的物理学并回答有关纤维形态的基本问题(从纳米级到宏观麦克索)也受到欢迎。
纳米技术已被证明是一个多学科研究领域,其在人类活动多个领域的应用范围不断扩大。随着工程、工业、技术和医疗纺织品多功能性的不断提高,纳米技术在纺织材料方面取得了进展。由于光子晶体、等离子体、发光、建筑着色剂、全息术、LED 显示器和超材料等尖端技术的融合,纺织材料现在有多种用途 [1]。此外,客户对以可持续方式生产的耐用和功能性服装的需求不断增加,为将纳米材料整合到纺织基材中创造了机会。纳米材料提供了更广泛的应用潜力,可以创造能够通过电、颜色或生理信号感知和响应外部刺激的联网服装 [2]。
表征纤维组成并将其从材料混合物中取出,对于实施有效的纤维回收系统至关重要。这项研究研究了针对纺织行业的环境挑战处理纺织废物的创新方法。它涵盖了传统和现代的分离技术,包括机械,化学,生物学,静电和激光诱导的分解光谱副本。强调纺织品中的可持续实践对于打击废物积累和由快速时尚造成的环境伤害至关重要。高级分离方法是促进纺织品材料回收和升级的关键,用于循环和环保的时尚领域。采用这些策略可以减少行业的环境影响,减少垃圾填埋场的浪费,并为纺织业和地球的更可持续的未来做出贡献。
自我:技术发展和不断增长的需求导致了材料科学领域的重大创新。非织造的表面材料是纺织工业的重要子分支,是重要的材料,具有广泛的应用,近年来在生物医学领域引起了极大的关注。非织造表面是灵活的,光明和经济材料,而不是传统的编织或编织技术产生的。这些材料具有低成本,轻,灵活和快速生产的优点,这要归功于生产过程中的纤维不规则和各种结合方法。高耐用性,低重量和高空气渗透性特征,例如非织造表面,伤口覆盖,药物传播,卫生产品和生物信号遵循 - 诸如提供有效溶液之类的区域。非织造表面材料的广泛使用区域需要正确表征物理,机械和化学特性。这种表征在确定材料的性能,质量和应用潜力中起着关键作用。非织造表面的表征方法包括评估材料的结构,强度,渗透性,吸收能力和其他重要特征的过程。在本文中,它重点关注非织造表面材料的生物医学区域,并对这些材料的特征方法进行了全面的检查。基于文献中目前的研究,详细讨论了用于确定非织造表面特征的各种特征方法。关键字:表面,生物医学应用,表征
“通过放松最优传输和自相似性实现风格迁移” Proc.IEEE Conf.计算机视觉和模式识别,第 10051-10060 页,2019
在动荡的商业环境中,为工程驱动型公司制定竞争战略的关键问题:企业使命;关键结果领域和情境分析,包括优势、劣势、机会和威胁;确定规划假设、关键问题、设定目标、制定战略。将技术作为公司的战略资源进行管理;了解流程。技术创新的作用和回报;将技术的战略关系与战略规划、营销、财务、工程和制造相结合;政府、社会和国际问题;与文化多样性和道德问题有关的问题。主观、判断和专家决策;涉及技术替代方案的战略决策中的冲突解决;分层决策模型;个人和集体决策;决策差异和群体分歧评估。
MATERIALS INC. 及其子公司和附属公司(统称“供应商”)的销售须遵守供应商的标准销售条款,该条款包含在适用分销商或其他销售协议中,印在订单确认书和发票背面,并可根据要求提供。尽管本文所含的任何信息、建议或建议均以诚意提供,但供应商不作任何明示或暗示的保证或担保:(i) 本文所述结果将在最终使用条件下获得,或 (ii) 包含其产品、材料、服务、建议或建议的任何设计的有效性或安全性。除供应商的标准销售条款另有规定外,供应商及其代表在任何情况下均不对因使用本文所述材料、产品或服务而造成的任何损失负责。每位用户应自行决定供应商的材料、服务、建议或意见是否适合其特定用途。每位用户必须确定并执行所有必要的测试和分析,以确保其包含供应商产品、材料或服务的成品部件在最终使用条件下是安全的且适合使用。本文件或任何其他文件中的任何内容,或任何口头建议或意见,均不得视为更改、变更、取代或放弃供应商的标准销售条款或本免责声明的任何规定,除非供应商以书面形式明确同意任何此类修改。本文包含的关于任何材料、产品、服务或设计的可能或建议用途的任何声明均不旨在或不应被解释为授予涵盖此类用途或设计的供应商任何专利或其他知识产权下的许可,或建议在侵犯任何专利或其他知识产权的情况下使用此类材料、产品、服务或设计。
尽管如今服装上的集成传感器是核心领域,但纺织品上集成传感器技术的新用途在当前研究中也越来越受到重视。织物用于许多与个人服装无关的领域。这些领域包括汽车工业、家居服装、农业、建筑材料、海运业等。[7,10] 应用纺织技术生产智能纺织品可以提高产品在这些领域的价值,公司可以利用这些价值推出新产品。智能纺织品可以提供用于意想不到的应用的工具,例如使用新纺织材料和标准电子设备为织物添加湿度或存在检测等功能。[11] 集成纺织传感器的一些优点是能够以更低的成本覆盖比标准传感器更长的区域,比电子元件的要求更少,或者能够监测物理或化学刺激而不会显着影响织物的结构。生产纺织传感器的集成方法也是世界各地的研究领域,其中可以找到各种各样的方法。有以化学为导向的方法,如逐层自组装法[12]、通过电磁场集成(静电纺丝)[13],以及使用纺织工艺引入传感器的方法,如刺绣或机织制造方法。不同的研究已经证明,刺绣是最具成本效益的原型设计和小规模生产技术,因为它可以快速制作原型并且所需机器成本低廉。以前关于电容式叉指传感器的研究[14–16]是使用刺绣作为集成方法进行的。然而,当纺织传感器用于医疗保健应用时,小规模生产可能是一个缺点。众所周知,机织织物可以大规模生产,成本低于刺绣。此外,编织技术可以生产完全集成且非触摸感应的纺织传感器。[17]编织电子纺织品也是一个不断发展的研究领域,近年来一直在增长。 [18,19] 编织技术为纺织品传感器的集成提供了更好的效果,同时保持了基材的纺织品特性。多年来,湿度一直是医院或养老院的关键因素。与长期接触相关的伤害