根据旋转变压器的特性,驱动运放需要有以下特性: • 旋转变压器的励磁原边线圈通常是有很低的DCR ( 直流电阻),通常小于100Ω,因此需要有较强的电流 输出能力才可以驱动线圈,最高至200mA。 • 为了保证的精度以及线性度,在旋转变压器的应用中需要具备较高的SR(压摆率Slew Rate)。 • 旋转变压器的常见激励方式为差分推挽输出,对放大器要求较宽的带宽以及较高的开环增益,以确保信 号不失真。 • 汽车应用EMI 环境复杂,为了保证励磁功率放大电路不被干扰,放大电路需要具备一定的EMI 抑制能力。 • 作为高功率驱动级,需要具备限流和过温关断功能,保证系统的可靠性和鲁棒性。 • 传统的解决方案是利用通用运放和分立三极管搭建高输出电流,电路复杂可靠性低,且并且难以集成热 关断和限流保护等功能。NSOPA240X 运算放大器具有高电流输出能力,最大可支持400mA 的持续电流 输出。并集成了过温关断,限流保护等安全功能,满足各类旋转变压器驱动的需求。
图 1:制造带有水凝胶涂层的线圈支撑血管移植物。A) 通过初始电纺层制造电纺套管,然后使用定制溶液打印机进行线圈沉积,最后形成最终电纺层。使用四氢呋喃进行溶剂蒸汽焊接两小时,以提高构造完整性。B) 通过扩散介导的氧化还原引发 PEUDAm 第一网络交联对电纺移植物进行水凝胶涂层,从而确定水凝胶涂层的厚度。然后,NAGA、bisAAm 和光引发剂膨胀到第一网络中,并通过光引发固化,形成最终的互穿网络水凝胶涂层。
摘要 - 组织工程是一个新兴的多学科领域,旨在利用工程和生物学原理修复或替换受损的组织和器官。该领域发展的核心是能够实时监测组织生长。这需要使用需要供电的可植入设备,例如传感器。电池等传统电源可能会阻碍组织生长和组织损伤,因此无线电力传输 (WPT) 成为一种有吸引力的替代方案。本研究深入探讨了用于组织监测的射频无线电力传输的线圈配置的设计和评估。具体来说,对比了两种线圈设计之间的性能指标:一种采用四个圆形线圈,另一种将三个方形线圈和一个圆形线圈混合在一起。分析表明,虽然两种配置的性能都会随着发射器和接收器之间距离的增加而下降,但距离 30 毫米的四个圆形线圈的效率为 25%,三个方形线圈和一个圆形线圈的效率为 45%,而且它们的效率差异很大。圆形线圈具有更高的电力传输效率和生物相容性,而方形和圆形线圈的组合则延长了传输距离。我们的研究结果阐明了线圈设计与 WPT 性能之间的相互作用,为开发用于实时组织生长监测的植入式设备提供了宝贵的见解。这项研究推动了 WPT 的设计工作,并将其定位为伤口愈合、器官移植和药物测试应用的关键参考。
1 印度泰米尔纳德邦钦奈 AMET 等同大学机械工程系 2 印度泰米尔纳德邦钦奈 Saveetha 医学与技术科学研究所 Saveetha 工程学院电气与电子工程系 3 印度泰米尔纳德邦钦奈 Ramapuram Easwari 工程学院电气与电子工程系 4 印度泰米尔纳德邦 Srivilliputhur Krishnankoil Kalasalingam 研究与教育学院电子与通信工程系 5 坦桑尼亚圣约瑟夫大学电子与通信工程系 6 沙特阿拉伯利雅得 11451 沙特国王大学科学学院物理与天文系 7 韩国天安市 Dandae-ro 119 檀国大学动物资源科学系 31116
抽象对象提高了超高野外系统的光滑功能,并在7 t处添加了可访问的低复杂性B 0用于头部MRI的Shim Array阵列。材料和方法八个频道B 0 Shim Coil阵列的设计是在易于改进和构造复杂性之间进行的权衡,以便可轻松使用Shim阵列,以提供可与标准的7 t Head coil一起使用的Shim阵列。使用开源八通道垫片放大器机架将阵列连接。将全脑和基于切片的光滑的场均匀性改善与标准的二阶光合物进行了比较,并与具有32和48个通道的更复杂的高阶动态垫片和垫片阵列进行了比较。结果八通道垫片阵列可在整个脑部静态弹药中提高12%,并在使用基于切片的垫片时提供了33%的改进。这样,八通道阵列的执行类似于三阶动态垫片(无需高阶涡流补偿)。更复杂的垫片阵列具有32和48个通道的性能更好,但需要专用的RF线圈。讨论设计的八通道Shim阵列提供了一种低复杂性和低成本方法,可改善B 0在超高场系统上的弹跳。在静态和动态杂物中,它在标准弹跳中提供了改进的B 0均匀性。
在过去的二十年中,经颅磁刺激(TMS)已用于研究方案和神经疾病的临床治疗。在这项工作中,我们分析了经颅磁刺激设备的加热,目的是使用新颖的刺激线圈设计来减少它。设备的操作受刺激线圈过热的限制,因此在治疗过程中不断使用设备,并且设备的终生会受到影响。考虑使用同心电感器来划分电流的大小,分析的第一阶段包括研究电激发电路的响应。这是通过多物理分析补充的,磁场之间的耦合和两个不同的线圈几何形状之间的耦合,显示了生成的磁场的空间分布和周围刺激线圈周围空间中的温度上升。这项研究的主要贡献是使用有限元方法设计刺激线圈的设计,从而降低了设备的工作温度,考虑到实用的线圈几何形状。关键字:线圈,电路,有限元法,诱导电场,经颅磁刺激。
搜索线圈可与电子电荷积分器结合使用,以测量磁通密度;要么改变磁场强度,要么将搜索线圈移入或移出磁场,这样磁通量的变化就会在线圈中产生电动势。通过在稳定的非导电、非磁性线圈架上缠绕单层线圈,可以生产出具有可计算有效面积的搜索线圈。国家物理实验室 (NFL) 已生产出一组非常稳定的线圈,方法是将裸铜线在张力下缠绕在熔融石英线圈架上,线圈之间留有空隙以提供必要的绝缘。线圈架和电线的尺寸用光学千分尺测量(以避免压坏电线),据此计算有效面积,不确定度为:t 0.02%。二级标准搜索线圈通常使用缠绕在树脂粘合布线圈架上的绝缘电线制造,在这种情况下,不确定度应能达到:t 0.2%。
目的:由于实际、方法和分析方面的考虑,婴儿期功能性磁共振成像 (fMRI) 面临挑战。本研究旨在实施一种与硬件相关的方法来提高清醒婴儿 fMRI 的受试者依从性。为此,我们设计、构建并评估了一个自适应的 32 通道阵列线圈。方法:为了能够使用紧密贴合的头部阵列线圈对 1-18 个月大的婴儿进行成像,开发了一种可调节头部线圈概念。线圈设置方便半坐式扫描姿势,以提高婴儿的整体扫描依从性。耳罩隔间直接集成在线圈外壳中,以便在使用声音保护时不会失去线圈在婴儿头部的紧密贴合。使用基准级指标、信噪比 (SNR) 性能和加速成像能力,根据模型数据对构建的阵列线圈进行评估,以用于平面和同步多层 (SMS) 重建方法。此外,还获取了初步的 fMRI 数据以评估体内线圈的性能。结果:与市售的 32 通道头部线圈相比,模型数据显示 SNR 平均增加了 2.7 倍。在婴儿头部模型的中心和外围区域,测得的 SNR 增益分别为 1.25 倍和 3 倍。婴儿线圈还显示出对欠采样 k 空间重建方法和 SMS 技术的良好编码能力。