摘要。块体碳化硅 (SiC) 的优越物理特性以及一维 (1D) 纳米结构特定物理特性的预期增强,激发了一系列针对纳米线 (NW) 制造和特性以及其在器件中的应用的研究。SiC 纳米线场效应晶体管 (NWFET) 是研究 SiC NW 在外部刺激(如电场)(集成电路中的应用)或 NW 表面上存在力或化学/生物物种(传感器中的应用)时在不同温度下的电特性的理想器件概念。SiC NW 量子传输建模的初步报告揭示了实现与 Si 基 NWFET 相当性能的前景。然而,实验性的 NWFET 演示表现出较低的载流子迁移率、I ON /I OFF 比和跨导 (gm ) 值,这对其进一步发展构成了障碍。低性能主要源于高度无意掺杂和未优化的 SiO 2 /SiC NW 界面。事实上,由于缺乏对 SiC NW 自下而上的生长过程的严格控制,导致非常高的载流子浓度(主要源于无意掺杂)接近退化极限。高密度陷阱和固定电荷的低界面质量导致栅极电场屏蔽,并表明需要进一步研究 SiO 2 /SiC NW 界面。由于这两种影响,即使在非常高的栅极电压下也无法实现器件关断。目前,只有在源/漏极 (S/D) 区域具有肖特基势垒 (SB) 的背栅极 NWFET 才表现出明确的关断和改进的性能,这要归功于通过全局栅极作用间接调制漏极电流,从而调节 S/D 区域的 SB 透明度。
1 有研院集团有限公司智能传感新材料国家重点实验室,北京 100088;gangrongli@foxmail.com(GL);jinqingxi@foxmail.com(QJ);wangguozhi0809@126.com(GW);zhuyancxy@foxmail.com(YZ);yunkong0503@163.com(YK);zhaohongbin@grinm.com(HZ);tuhl@grinm.com(HT)2 有研院工程设计有限公司,北京 101407 3 北京有色金属研究总院,北京 100088 4 北方工业大学信息科学与技术学院,北京 100144;weishuhua@ncut.edu.cn(SW);zhangj@ncut.edu.cn(JZ); hujiawei@ime.ac.cn (JH) 5 中国科学院微电子研究所先进集成电路研究发展中心,北京 100029,中国;zhangqingzhu@ime.ac.cn * 通信地址:weiqianhui@grinm.com (QW);weifeng@grinm.com (FW) † 这些作者对本文的贡献相同。
摘要:门控ZnO纳米线场发射阵列在平板X射线源、光电探测器等大面积真空微电子器件中有着重要的应用。由于应用需要高像素密度的场发射阵列,因此需要研究像素密度对门控ZnO纳米线场发射性能的影响。本文模拟了在保持横向几何参数成比例的情况下不同像素尺寸下同轴平面门控ZnO纳米线场发射阵列的性能,获得了发射电流和栅极调制随像素尺寸的变化曲线。利用所获得的器件参数,制备了同轴平面门控ZnO纳米线场发射阵列。场发射测量结果表明,当栅极电压为140 V时,制备的ZnO纳米线场发射阵列的电流密度为3.2 mA/cm 2,跨导为253 nS,表明栅极控制有效。性能的提高归因于优化的栅极调制。