具有高光谱纯度的激光器可以实现多种应用空间,包括精密光谱、相干高速通信、物理传感和量子系统操控。目前,精心设计和构建的台式法布里-珀罗腔已经在主动激光线宽减小方面取得了显著成就,主要用于光学原子钟。然而,对在周围环境中高性能运行的小型化激光系统的需求日益增加。这里介绍了一种紧凑而坚固的光子原子激光器,它由一个 2.5 厘米长、20 000 精细度、单片法布里-珀罗腔和一个微机械铷蒸汽室集成而成。通过利用腔的短时频率稳定性和原子的长期频率稳定性,实现了能够集成以进行扩展测量的超窄线宽激光器。具体来说,该激光器支持 20 毫秒平均时间内 1 × 10 − 13 的分数频率稳定性,7 × 10 − 13
美国商务部,芭芭拉·哈克曼·富兰克林,部长 技术管理局,罗伯特·M·怀特,技术部副部长 美国国家标准与技术研究所,约翰·W·莱昂斯,主任
低至 366 nm 汞线),可以对低至约 0.3 Ilm 的线宽进行光学测量(对于 366 nm 的 f/1 光学元件,艾里斑直径为 0.45 Ilm)。但是,要达到如此窄的线宽,必须对图像中的衍射效应进行建模,并制定一个有意义的标准,确定图像轮廓上的哪个点对应于线的边缘。随着特征高度变得大于大约四分之一波长,并且纵横比(特征高度/宽度)接近并大于 1,这种建模变得越来越困难。这种困难部分是数学上的(例如,不能使用标量理论将特征视为平面,并且对于小线宽和大纵横比,相邻边缘的衍射效应会相互作用)。困难的部分原因还在于,随着特征高度的增加和边缘几何形状与理想垂直形状的偏离,衍射效应变得更加明显,并从边缘进一步传播。事实上,对于大纵横比和非垂直壁,“线宽”的定义本身就有多种解释。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
已被利用以在化合物中提出四分和高配位,例如[C(AUPR 3)4]和[C(AUPR 3)5] +。[13–17]在此表明,单个金原子也可以表现出类似于氢原子的化学。我们报告了实验和理论证据,表明一系列的Si -Au簇[Siau n](n = 2-4)在结构和电子上与SIH n相似。相应[siau n]阴离子的光电光谱(PES)表明,[siau 4]的较大能隙为2.4 eV,因此表明非常稳定的分子。从头算计算表明,[Siau 4]具有理想的四面体结构,而[siau n]中化学键的性质具有与Sih n中的一对一的对应关系。甲硅烷的化学稳定性[siau 4]表明它可以合成为孤立化合物。目前的发现也与了解技术重要的硅及其界面中的化学相互作用有关。通过混合Au – Si靶的激光蒸气产生硅簇,并通过PES研究了它们的电子结构(请参阅实验部分)。图1显示了两个不同的
摘要:平面纳米光子结构能够实现嵌入量子点的宽带、近乎统一的辐射耦合,从而实现理想的单光子源。电荷噪声限制了单光子源的效率和相干性,从而导致辐射光谱变宽。我们报告了通过在包含嵌入 ap - i - n 二极管的量子点的砷化镓膜中制造光子晶体波导来抑制噪声的方法。波导附近的局部电接触可最大限度地减少漏电流,并允许快速电控制(≈ 4 MHz 带宽)量子点谐振。耦合到光子晶体波导的 51 个量子点的谐振线宽测量在 6 nm 宽的辐射波长范围内表现出接近变换极限的辐射。重要的是,局部电接触允许在同一芯片上独立调谐多个量子点,这与变换极限辐射一起成为实现基于多发射器的量子信息处理的关键组成部分。关键词:光子晶体波导、量子点、单光子、共振光谱、纳米光子学、半导体异质结构
摘要:与大规模硅制造兼容的硅光子学是一个破坏性的光子平台,表明对行业和研究领域(例如量子,神经形态计算,LIDAR)具有重要意义。尖端应用,例如高容量相干的光学通信和杂差激元,已升级对集成窄线宽激光源的需求。为此,这项工作旨在通过开发高性能混合III-V/硅激光来满足这一要求。开发的集成激光器利用单个微孔谐振器(MRR),演示了超过45 dB的侧模式抑制比(SMSR)的单模操作,激光输出功率高达16.4 mW。远离需要多个复杂控制的当前混合/异质激光体系结构,开发的激光体系结构仅需要两个控制参数。重要的是,这是通过降低表征这些激光器的复杂性来简化工业采用的。通过简洁的结构和控制框架,实现了2.79 kHz的狭窄激光线宽,低相对强度噪声(RIN)达到-135 dB/hz。此外,在测量10 dB的信噪比(SNR)的情况下,证明了12.5 GB/s的光学数据传输。
捕获 40 Ca + 离子的量子信息科学实验需要波长为 729 nm 的窄线宽激光器来驱动 4 2 S 1 / 2 和 3 2 D 5 / 2 之间的量子比特跃迁。本文介绍了一种钛宝石激光器,该激光器使用 Pound-Drever-Hall 技术将频率稳定到波长为 729 nm 的参考腔。激光线宽是通过与其他频率稳定激光器的拍频测量和对单个捕获 40 Ca + 离子的 Ramsey 实验来测量的。最窄的测量线宽 (FWHM) 是通过拍频测量获得的,在测量时间为 1 s 时为 4.2(17) Hz,代表了钛宝石激光器线宽的上限。在参考腔下方安装隔振板后实现了这个最窄的线宽。对已安装的光纤噪声消除和激光强度稳定装置的分析表明,光纤和激光强度噪声不会限制最窄的测量线宽。还利用其他频率稳定激光器的拍频测量来获得稳定激光器频率漂移的值,测量结果为 -371(3) mHz/s。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽。长期记录表明,光子线键键激光器具有58小时的无模式操作的高无源稳定性,频率漂移仅为4.4 MHz/h。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
线宽 (3 dB) • 2500W 单模 • 窄线宽 • 1050 - 1080nm 输出 • 低 SWaP • 3 m 传输光纤 • 内部/外部种子 ±0.5 或更好