动机:模块化响应分析(MRA)是从turg turgation数据中推断生物网络的良好方法。经典,MRA需要线性系统的解决方案,结果对数据和扰动强度中的噪声敏感。由于噪声传播,对10个或更多节点网络的应用很难。结果:我们提出了将MRA作为多线性回归问题的新表述。这使得能够在更大,过度确定且更稳定的方程式系统中整合所有重复和潜在的扰动。可以获得更相关的网络参数的置信区间,我们显示了大小高达1000的网络的竞争性能。以已知零边缘形式的先验知识整合进一步改善了这些结果。可用性和实现:用于获得呈现结果的R代码可从GitHub获得:https:// github.com/j-p-borg/bioinformatics
这项研究证明了使用包括人口统计学,生理和传感器衍生的变量的数据集估算血糖水平来估算血糖水平的应用。通过严格的数据准备和假设验证,包括使用Box-Cox转换,模型的有效性和性能得到了增强。逐步选择和假设检验促进了该模型的重新构建,保留了关键预测因子,例如年龄,性别,赫特拉特和糖尿病患者,这些预测因素明显增添了葡萄糖水平。排除了NIR阅读和最后食用的非贡献变量,改善了模型的可解释性,而不会损害其预测精度。结果强调了基于回归的非侵入性葡萄糖监测方法的潜力,为糖尿病管理中具有成本效益且可访问的解决方案提供了基础。虽然FNDING突出显示了明显的预测指标和稳健的模型性能,但未来的工作可以探索高级传感器技术和非线性建模技术的集成,以进一步提高预测精度。这些进步可以显着促进改善糖尿病护理,并促进更广泛的非侵入性监测解决方案的采用。
本研究建立在技术整合在高等教育中日益重要的地位,特别是在教育环境中人工智能 (AI) 的使用。背景研究强调,教育项目中对人工智能培训的探索有限,尤其是在拉丁美洲。人工智能在教育实践中变得越来越重要,影响着包括实验科学在内的各个学科能力的发展。本研究旨在描述钦博拉索国立大学实验科学教育项目学生在人工智能、人工智能使用和数字资源方面的专业能力之间的相关性。在方法上,采用了定量方法,涉及对 459 名学生进行结构化调查。使用多元回归模型进行数据分析,以建立对人工智能使用的预测见解。开发了一个多元线性回归模型来预测这些学生的人工智能使用情况。分析显示,人工智能能力、人工智能使用和数字资源之间存在显著相关性。回归模型强调,人工智能能力和数字资源都是人工智能使用的重要预测因素。这些发现强调了发展人工智能能力和提供数字资源访问权限以加强人工智能在教育实践中有效使用的重要性。讨论了局限性和未来的研究方向。
摘要 与许多其他现代编程语言一样,Pharo 将其应用扩展到计算要求高的领域,例如机器学习、大数据、加密货币等。这就需要快速的数值计算库。在这项工作中,我们建议通过外部函数接口 (FFI) 调用高度优化的外部库(例如 LAPACK 或 BLAS)中的例程来加速低级计算。作为概念验证,我们基于 LAPACK 的 DGELSD 例程构建了线性回归的原型实现。使用三个不同大小的基准数据集,我们将我们的算法的执行时间与纯 Pharo 实现和 scikit-learn(一种流行的机器学习 Python 库)进行比较。我们表明 LAPACK&Pharo 比纯 Pharo 快 2103 倍。我们还表明,scikit-learn 比我们的原型快 8-5 倍,具体取决于数据的大小。最后,我们证明纯 Pharo 比纯 Python 中的等效实现快 15 倍。这些发现可以为未来为 Pharo 构建快速数值库并进一步在更高级的库(如 pharo-ai)中使用它们奠定基础。
微生物群落在各种环境中起关键作用。预测它们的功能和动力学是微生物生态学的关键目标,但是这些系统的详细描述可能是非常复杂的。一种处理这种复杂性的方法是诉诸于更粗糙的表示。几种方法试图以数据驱动的方式识别微生物物种的有用群体。最近的工作在从头发现时,使用像线性回归这样简单的方法来预测给定功能的粗略表示,对多个物种甚至单个这样的群体(Ensemble-Biterient优化(EQO)方法)进行了一些经验成功。将社区功能建模为单个物种贡献的线性组合似乎很重要。但是,确定生态系统的预测性过度的任务与预测功能的任务不同,并且可以想象,前者可以通过比后者更简单的方法来完成。在这里,我们使用资源竞争框架来设计一个模型,在该模型中,要发现的“正确”分组是良好的定义,并使用合成数据来评估和比较基于回归的三种方法,即先前提出的两个和我们介绍的两个方法。我们发现,即使函数明显非线性,基于回归的方法也可以恢复分组。该多组方法比单组EQO具有优势。至关重要的是,模拟器(线性)方法的表现可以胜过更复杂的方法。
在 COVID-19 大流行期间,健康公平成为国家和国际层面令人关注的问题。在国家层面,研究人员一直关注其国家内不同社会群体在感染水平、后果和疫苗接种方面的差异(1-14)。全球层面的主要健康公平问题之一是 COVID-19 疫苗的不公平获取,特别是在 COVID-19 疫苗开始生产后和疫苗变得充足之前的时期。全球卫生治理 (GHG) 负责协调 COVID-19 疫苗的公平分配;然而,情况并非如此(15、16)。根据 Our World in Data 网站 2022 年 4 月 7 日的数据,高收入国家 (HIC) 和中上收入国家 (UMIC) 完全接种疫苗的人数比例分别达到 74.1% 和 76.68%。相比之下,中低收入国家 (LMIC) 和低收入国家 (LIC) 的完全接种疫苗人口比例分别达到 50.51% 和 11.51%。至于部分接种疫苗的人口比例,估计高收入国家、中高收入国家、中低收入国家和低收入国家分别为 5.05%、4.77%、9.17% 和 3.26% ( 17 )。这些数字表明这些国家群体在疫苗接种方面存在差异。
对电池健康的了解非常重要。它提供了对给定系统能力的洞察力,并允许操作员更效率地计划。,但是测量电池的健康状态(SOH)是不同的,并且需要时间。更重要的是,需要将电池从操作中取出,以正确分析。本文旨在根据易于获取的操作数据评估预测电池健康的提议的线性回归方法。主要预测变量是电压偏差,这是电池电压/放电周期期间电池电压的特征。使用此方法,唯一需要提取电池的时间就是收集培训数据。然后,该模型可用于类似的电池来预测其SOH。这意味着这些系统永远不需要停止,从而提高生产率。本文的结果是所使用的数据不适合线性回归。残留物的异质性和非正态性存在问题,但主要是电压偏差与SOH之间关系的估计参数与已建立的理论相反。不能忽略。因此,估计的模型不应用于预测SOH。为了实现准确的SOH预测的目标,应进行更多的研究并使用更好的样本。
摘要 与许多其他现代编程语言一样,Pharo 将其应用扩展到计算要求高的领域,例如机器学习、大数据、加密货币等。这就需要快速的数值计算库。在这项工作中,我们建议通过外部函数接口 (FFI) 调用高度优化的外部库(例如 LAPACK 或 BLAS)中的例程来加速低级计算。作为概念验证,我们基于 LAPACK 的 DGELSD 例程构建了线性回归的原型实现。使用三个不同大小的基准数据集,我们将我们的算法的执行时间与纯 Pharo 实现和 scikit-learn(一种流行的机器学习 Python 库)进行比较。我们表明 LAPACK&Pharo 比纯 Pharo 快 2103 倍。我们还表明,scikit-learn 比我们的原型快 8-5 倍,具体取决于数据的大小。最后,我们证明纯 Pharo 比纯 Python 中的等效实现快 15 倍。这些发现可以为未来为 Pharo 构建快速数值库并进一步在更高级的库(如 pharo-ai)中使用它们奠定基础。
使用线性最小二乘回归技术,以 250 米的空间分辨率概括了经多尺度卷积、形态和纹理变换过滤的免费数字高程模型 (DEM) 全球数据中建筑区的垂直分量估计值。选择了六个测试案例:香港、伦敦、纽约、旧金山、圣保罗和多伦多。根据 60 种线性、形态和纹理过滤组合以及不同的概括技术,对五个全球 DEM 和两个 DEM 复合材料进行了评估。引入了四种广义的建筑区垂直分量估计值:平均建筑总高度 (AGBH)、平均净建筑高度 (ANBH)、建筑总高度标准差 (SGBH) 和净建筑高度标准差 (SNBH)。研究表明,ANBH 和 SNBH 给出的净 GVC 最佳估计值总是比 AGBH 和 SGBH 给出的相应总 GVC 估计值包含更大的误差,无论是平均值还是标准差。在本研究评估的源中,使用单变量线性回归技术估计建筑区 GVC 的最佳 DEM 源是使用联合运算符 (CMP_SRTM30-AW3D30_U) 的 1 弧秒航天飞机雷达地形测绘任务 (SRTM30) 和先进陆地观测卫星 (ALOS) 世界 3D-30 米 (AW3D30) 的组合。使用 16 颗卫星开发了一个多元线性模型