e-邮件:vasyl.ustymenko@rhul.ac.uk摘要。让N代表N变量中具有二次多元公共规则的数字签名的长度。我们构建了Quantum的安全程序以签名O(n T),T≥1具有时间O(n 3+t)的签名n的数字文档。它允许在时间O(n 4)中签名O(n t),t <1。该过程是根据代数密码术定义的。它的安全性取决于基于半群的非交通加密协议,该协议指的是碰撞元件分解为构图中的复杂性,使其成分为给定的发电机。该协议使用了多种(k*)n的欧拉(Eulerian)变换的半群,其中k*是有限交换环k的非平凡乘法组。其执行复杂性为o(n 3)。此外,我们使用此协议来定义不对称的密码系统,并使用明文和密文的空间(k*)n,允许用户加密和解密o(n t)大小n中的n中o(n 3+[t])文档,其中[x]在x中提供[x]的流量。最后,我们建议基于协议的密码系统与明文空间(k*)n一起工作和密文k n的空间,该空间允许o(n t)解密,t> 1个大小n的文档,时间为o(n t+3),t> 1。多元加密图具有线性度O(n)和密度O(n 4)。我们通过Eulerian转换讨论了公共密钥的概念,该转换允许签署O(n t),t≥0文档O(n t+2)。还讨论了几种欧拉和二次转化的交付和使用思想。
当今,核物理和粒子物理实验活动的前沿需要具有高能量、能够在高通量(高达 . / ' )和高速率下工作的紧凑型探测器,以便测量非常罕见现象的截面[1-4]。碳化硅 (SiC) 因其出色的抗辐射性能代表了探测器技术的新挑战。由于其成分,SiC 是一种宽间接带隙半导体,并且是两组 IV 元素(硅和碳)的二元相图中唯一稳定的化合物。在所有宽带隙半导体中,碳化硅是目前研究最深入的一种,也是在高温电子器件、生物医学传感器 [5]、紫外光传感器 [6]、粒子和 X 射线探测器等广泛设备应用领域中最有潜力达到市场成熟的一种。 SiC 还被认真考虑作为硅的有效替代品,用于生产抗辐射设备,因为它可以将硅探测器的优异性能(效率、线性度、分辨率)与更大的抗辐射能力、热稳定性和对可见光的不敏感性结合起来。根据原子在晶格中的堆叠顺序,SiC 可以出现在各种类型的晶体结构中,这种特性被称为“多型性”。SiC 有 200 多种不同的多型体;3C、4H 和 6H 结构是微电子应用中最常见和最受欢迎的结构。每种多型体都有自己的物理特性,例如能带隙,范围从 3C 中的 2.36 eV 到 4H 中的 3.23 eV。4H-SiC 被认为最适合高功率、高频率和高温应用。用于设备应用的低缺陷材料通常通过 CVD(化学气相沉积)技术生长外延层获得。外延也允许高度
摘要 在欧洲航天局赫歇尔空间天文台 (HSO) 的开发框架下,IMEC 设计了用于 PACS 仪器的冷读出电子器件 (CRE)。该电路的主要规格是高线性度、低功耗、高均匀性和工作温度为 4.2K(液氦温度,LHT)时的极低噪声。为了确保高产量和均匀性、相对容易的技术可用性以及设计的可移植性,该电路采用标准 CMOS 技术实现。电路在室温下可正常工作,这允许在集成和鉴定之前进行筛选,并且对生产产量和时间有重要影响。该电路安装在 Al 2 O 3 基板上以获得最佳电气性能。在同一基板上,集成了偏置信号生成、短路保护电路和电源线的去耦电容器。这导致基板相对复杂,包含 30 多个无源元件和一个芯片,通过导电和非导电胶以及近 80 个引线键合进行集成。因为探测器阵列在发射前要冷却到 4.2K,所以必须证明安装的基板在这种温度和恶劣环境下的可靠性和发射生存力。为此,在基板安装期间要验证每个组装步骤的质量和相关可靠性。这包括验证粘合材料的兼容性、优化粘合产量以及设备的温度循环(室温和 LHT 之间)。对鉴定模型的其他测试将侧重于质子和伽马射线辐照下的电路功能、低温振动测试以证明发射生存力,以及详尽的温度循环以鉴定组装程序。本文中,我们介绍了所开发电路的完整集成和鉴定,包括飞行模型生产过程中的组装和验证以及在鉴定模型上组装方法的鉴定。关键词 低温、远红外、LHT、鉴定、读出电子电路、系统集成。一、简介 光电导体阵列照相机和光谱仪 (PACS) [1,2] 是赫歇尔空间天文台 (HSO,原名 FIRST) [3] 上的三台科学仪器之一,赫歇尔空间天文台是欧空局“地平线 2000”计划中的第四个基石任务 [4]。PACS 使用两个 Ge:Ga 光电导体阵列 (25 x 16 像素),同时对 60 至 210 µm 波段进行成像。光电探测器
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。
放射治疗 (RT) 的主要挑战是向肿瘤提供足够高的治疗剂量,同时保持附近器官受到可耐受的剂量,新的治疗方式正在迅速涌现。FLASH 放射治疗提供的治疗剂量比传统 RT(0.05 Gy/s)快几个数量级(≥40 Gy/s),并且已被证明可以降低正常组织发生并发症的可能性,同时提供与传统剂量率相似或更好的肿瘤控制率,减少治疗时间和器官运动相关问题。然而,FLASH RT 的临床实施面临着重大挑战,因为它的要求使得大多数现有的剂量测定设备已过时。碳化硅 (SiC) 的物理特性使其成为一种有趣的辐射剂量测定材料。SiC 的宽带隙降低了热产生电荷载流子的速率,从而与硅相比降低了漏电流和噪声。特别值得注意的是,SiC 每 mGy 沉积的信号产量(4H-SiC 为 425 pC/(mGy · mm3))低于硅。这使得 SiC 成为超高剂量脉冲辐射场或直接光束监测剂量测定的良好选择,其中半导体中的瞬时剂量沉积很大,可能会使传统硅二极管饱和。此外,SiC 具有更高的位移能量阈值,因此辐射硬度高于硅。如今,SiC 技术已经成熟,高质量基板可达 200 毫米,可广泛使用。在本次演讲中,我们将介绍在 IMB- CNM 设计和制造的新型碳化硅 PiN 二极管,旨在应对 FLASH RT 的技术挑战。在 PTB(德国)使用 20 MeV FLASH 电子束进行的首次表征中,这些二极管显示出其适用于高达每脉冲 11 Gy(4 MGy/s)剂量的相对剂量测定,且剂量测定性能可与商用金刚石剂量计相媲美 [doi:10.1088/1361-6560/ad37eb]。在 CMAM(西班牙)使用 7 MeV 质子测试了带有 FLASH 质子束的 SiC 二极管的性能,结果显示它们与剂量率具有良好的信号线性度,并且每脉冲剂量至少为 20 Gy 时响应可重复。最后,在 CNA(西班牙)使用高 LET、强脉冲质子束研究了二极管的抗辐射性。二极管的灵敏度在 1 MeV 质子中以 -1.34%/kGy 的初始速率逐渐下降,并且仅在接近 750 kGy 的剂量下才稳定下来。然而,即使累积剂量为几 MGy,每脉冲剂量的线性响应在很宽的剂量率范围内也能保持。所有这些测量都是在无需外部施加电压的情况下进行的。总之,在 IMB-CNM 制造的碳化硅二极管是硅和金刚石剂量计的真正替代品,适用于需要精确实时相对剂量测定的广泛应用,要求快速响应和长期稳定性。
近年来,已经出现了许多用于捕捉三维环境和物体的传感器系统。除了激光扫描仪和大地测量全站仪外,这里还必须列举立体视觉和基于三角测量的系统。特别是激光扫描仪在速度和准确性方面已成为最先进的技术,能够捕捉数十米大小的物体。激光扫描仪的主要缺点是它们的顺序操作模式。它们逐点测量。几年前,开发了一种功能齐全的新技术,能够同时以高分辨率捕捉环境。所谓的范围成像 (RIM) 或闪光激光雷达相机基于数字成像技术,并具有测量每个像素中相应物体点距离的能力。距离测量基于直接或间接飞行时间原理。由于其并行采集高达视频帧速率,RIM 相机甚至可以捕捉移动物体。就光学依赖性而言,可以得出所捕获场景的 3-D 坐标。距离测量的标称精度为几毫米。如果属性和特性变得稳定且可预测,RIM 可能成为许多应用的首选技术。例如,汽车、机器人和安全系统。标称坐标和测量坐标之间的显著偏差发生在几厘米的范围内。只有深入的研究才能帮助达到这里的理论极限。本论文讨论了影响 RIM 相机测量的几个方面。首先,简要介绍与 RIM 相关的基本技术。除了成像和距离测量方法外,RIM 还区分了两个基本原理。此外,重点放在特定的限制上。在这项工作期间,有三种不同的相机问世:瑞士 CSEM / MESA Imaging 的 SwissRanger SR-2 和 SR-3000,以及后来德国 PMDtec 的 3k-S。这三款相机基于间接飞行时间原理,配备了不同的复杂功能。除了集成的校准和校正功能外,抑制背景照明也是主要功能之一。但是,这些相机仅用于高度发达的演示。根据所需权利要求,对特定应用领域(如汽车或机器人)的适应性可产生专门的属性。对现有相机类型的分析有助于更深入地了解该技术。所分析相机的原始数据精度不超过几厘米。为了研究现有相机的属性,必须开发特殊的实验装置。这项工作的主要部分涉及 RIM 相机组件的研究和校准。通过摄影测量相机校准解决光学系统的几何偏差。根据偏差和统计数据分析距离测量系统。因此,指出了精度和准确度的局限性。除了散射效应的影响外,还讨论了积分时间、发射系统和入射角、目标反射率、外部和内部温度以及最终的线性度和固定模式噪声。此外,还介绍了一种系统校准过程的方法。由于影响参数的复杂性,尚未对各种影响参数的测量数据进行完整的校正。但高度系统的依赖关系预示着未来会出现复杂的校准程序。这项工作有助于理解传感器。
在高电阻率 200 mm <111> Si 上采用 Cu 大马士革 BEOL 工艺开发与 Si 代工厂兼容的高性能 ≤0.25 µm 栅极 GaN-on-Si MMIC 工艺 Jeffrey LaRoche 1 、Kelly Ip 1 、Theodore Kennedy 1 、Lovelace Soirez 2 、William J. Davis 1 、John P. Bettencourt 1 、Doug Guenther 2 、Gabe Gebara 2 、Tina Trimble 2 和 Thomas Kazior 1 1 Raytheon IDS Microelectronics,362 Lowell St.,Andover,MA 01810 电子邮件:jeffrey_r_laroche@raytheon.com 电话:(512)-952-2927 2 Novati Technologies, Inc.,2706 Montopolis Drive,Austin,TX 78741 关键词:GaN、HEMT、硅、MBE、大马士革、200 mm 摘要 雷神公司正在开发一种 200 mm GaN on Si MMIC 工艺,该工艺适用于独立的高频 MMIC 应用,以及与 Si CMOS、SiGe BiCMOS 和其他 III-V 族的异质集成。在之前的 100 mm 和 200 mm GaN-on-Si 工作 [1-5] 的基础上,这项工作报告了在完全集成的 MMIC 方面取得的进展,以及在 200 mm 直径的 Si 晶片上实现世界上第一个 X 波段 GaN 0.25 µm 功率晶体管。这种 GaN-on-Si HEMT 在 V d = 28 V 时可提供 4.7 W/mm 的功率和 9 dB 的增益,PAE 为 49%。晶圆由商业 CMOS 代工厂 Novati Technologies 制造,采用完全减成、无金、类硅的制造方法。简介 在过去十年中,氮化镓 (GaN) 在电力电子以及高功率密度和高线性度 RF 应用中引起了广泛关注。很显然,200 mm 硅基 GaN 晶圆的大规模商业化生产将由电力电子应用推动。然而,随着这些应用开始填充 200 mm 代工厂,高性能硅基 GaN RF MMIC 应用将自然跟进,并利用大直径晶圆和背景晶圆体积来降低 RF IC 的成本。除了在 200 mm 晶圆上制造的硅基 GaN MMIC 的成本优势之外,与芯片到晶圆方法相比,大直径晶圆制造还为 GaN HEMT 与硅 CMOS 的异质集成(以实现附加功能)提供了优势。虽然与芯片到晶圆集成兼容,但 200 毫米 GaN IC 与 200 毫米 CMOS 的晶圆到晶圆异质集成在缩短互连长度和提高高密度、高性能 IC 产量方面更有前景。为了促进未来成本、产量和功能的改进,雷神公司正在高电阻率 200 上开发亚微米(≤0.25 µm 栅极)GaN-on-Si MMIC 工艺
强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。
ABSTRACT: simple, rapid, economical, precise and accurate stability indicating rp- hplc method for the estimation of dapagliflozin propanediol monohydrate and sitagliptin phosphate monohydrate in tablet dosage form has been developed.a reverse phase high performance liquid chromatographic method was developed for the estimation of dapagliflozin propanediol monohydrate and sitagliptin已经开发了磷酸盐剂量形式的磷酸盐。实现分离柱kromasil c18(150 x 4.6)5 µm ID,梯度程序20 mm二氢磷酸钾磷酸钾缓冲液:芳族依腈,作为流动相,流速为1 ml/min。在DAPA的220 nm保留时间进行检测,发现SITA为8.71和2.94分钟。该方法已通过线性,准确性和精度进行验证。dapagliflozin丙二醇一水合物和磷酸西他汀磷酸盐一水合物的线性度25.68-755.83μg/ml。开发的方法被发现是准确,精确且快速的,以估计dapagliflozin丙二醇一水合物和磷酸西丁列汀磷酸盐剂量形式。在相同的色谱条件下,该药物应对水解,氧化,光解和热降解的应力条件。在RP-HPLC系统上分析了应力样品。关键字:dapagliflozin丙二醇一水合物,西他列汀磷酸盐一水合物,稳定性,指示RP-HPLC方法,验证。i。简介:糖尿病是慢性疾病,当胰腺产生足够的胰岛素或人体无法有效使用其产生的胰岛素时,会发生。这可能导致健康问题。高血糖,也称为血糖升高或血糖升高,是不受控制的糖尿病的常见影响,并且随着时间的流逝会导致身体的真正伤害,尤其是神经和血管。糖尿病是人体无法产生足够或任何胰岛素的一组疾病,无法正确使用所产生的胰岛素,也无法组合任何一个。这可能导致高血糖水平。葡萄糖是血液中发现的糖,是您的主要能源之一。缺乏胰岛素或血液中积聚。[1]。2型糖尿病也称为非胰岛素依赖性糖尿病,这意味着您的身体无法正确使用胰岛素。主要是人们通过健康的饮食和运动来控制其血糖水平,有些人正在使用药物。[2]尽管2型糖尿病在老年人中更为普遍,但年轻人的情况有所增加,因为肥胖儿童人数增加。[3]。DAPA和SITA的结构如图所示。[4-5] Sita sitagliptin增加胰岛素的产生并减少肝葡萄糖过量产生。西他列汀延长了GLP-1和GIP的作用。通过提高活性降脉蛋白水平,西他列汀会增加胰岛素的产生并降低α细胞的胰高血糖素分泌,从而降低肝葡萄糖过量产生。DAPA抑制SGLT2,DAPA阻止了肾脏中过滤的葡萄糖的吸收,肾脏中的葡萄糖葡萄糖排除量增加了葡萄糖的排除水平,并增加了葡萄糖的水平。[9-15]。ltd,使用。[6-8]通过文献调查发现,分析方法可用于单独估计DAPA和SITA以及其他组合。因此,人们认为可以执行稳定性,指示RP-HPLC方法开发和验证片剂剂型的同时估计。随着国际协调会议(ICH)指南的出现,建立稳定性指标方法(SIAM)的要求变得更加明确。该指南明确要求在各种条件下进行强制分解研究,例如pH,光,氧化等。和药物与降解产物的分离。[16]因此,这项工作的目标是开发一种新的敏感稳定性,指示RP-HPLC方法同时确定DAPA和SITA。此外,它还以平板电脑剂型形式的名为UDAPA-S 10/100含DAPA和SITA的市场产品进行了验证。[17] II。使用Shimadzu HPLC,LC 2010 CHT模型和LC解决方案软件。乙腈,甲醇,二氢磷酸盐,MILI-Q水和AR级的正磷酸来自Merck Life Science Pvt。从当地市场购买了商业剂量UDAPA-S 10/100。