在行为过程中记录的单个神经元活动种类繁多。然而,这些不同的单个神经元反应可以通过相对较少的神经共调节模式很好地描述。对这种低维神经群体活动结构的研究为大脑如何产生行为提供了重要的见解。几乎所有这些研究都使用线性降维技术来估计这些群体范围的共调节模式,将它们限制为平坦的“神经流形”。在这里,我们假设,由于神经元具有非线性响应并建立数千个可能放大这种非线性的分布式和循环连接,因此神经流形本质上应该是非线性的。结合猴子运动皮层、小鼠运动皮层、小鼠纹状体和人类运动皮层的神经群体记录,我们发现:1) 神经流形本质上是非线性的;2) 它们的非线性程度因结构不同的大脑区域而异;3) 在需要更多不同活动模式的复杂任务中,流形非线性变得更加明显。使用循环神经网络模型进行的模拟证实了电路连接和流形非线性之间的关系,包括结构不同的区域之间的差异。因此,行为产生背后的神经流形本质上是非线性的,随着神经科学家转向研究涉及日益复杂和自然行为的众多大脑区域,正确解释这种非线性将至关重要。
基于内核的非线性流形学习,用于基于脑电图的功能连通性分析和渠道选择,并应用于阿尔茨海默氏病Gunawardena,R.,Sarrigiannis,P。G.,Blackburn,D。J.&he,F。出版了PDF,存放在考文垂大学的存储库原始引用:Gunawardena,R,R,Sarrigiannis,PG,Blackburn,DJ&HE,F 2023,'基于内核的非线性流动性学习,用于EEG基于EEG的功能连接分析,并适用于Alzheimer's Disean's Neurosience,Neurosience,vol,vol。523,pp。140-156。 https://dx.doi.org/10.1016/j.neuroscience.2023.05.033 doi 10.1016/j.neuroscience.2023.05.033 ISSN 0306-4522 ESSN ESSN 1873-7544出版商:Elsevier出版商:Elsevier:Elsevier这是CC BID-NC-ND-NC-ND DD( http://creativecommons.org/licenses/by-nc-nd/4.0/)
b“摘要。我们考虑了u t d r ..u/ r n .u //的形式的方程式,其中n是整个空间r d和.u/是纽顿电位(laplacian的倒数),并且.u/是移动性。对于线性迁移率,.U/ D U,已提出方程和一些变化作为超导性或超流体的模型。在这种情况下,该理论会导致具有紧凑空间支持的特性的有界弱解的唯一性,特别是在空间强度u d c 1 t 1中具有恒定强度的圆盘涡流的特殊溶液在球中支撑的恒定强度的涡流涡流,在c 2 t 1 = d之类的时间内传播,因此显示出不连续的前面前面的前线。在本文中,我们提出了具有sublinear Mobility .u/ d u \ xcb \ x9b的模型,并使用0 <\ xcb \ x9b <1提出,并证明非负溶液到处恢复了积极性,并且在无限范围内显示出脂肪尾巴。该模型以许多方式作为上一个模型的正规化。尤其是,我们发现上一个涡流的等效物是一种明确的自相似解,如u d o.t 1 = \ xcb \ x9b /带有尺寸u d o的空间尾巴的时间。我们将分析限制为径向溶液,并通过特征方法构建解决方案。我们介绍了质量函数,该质量函数解决了汉堡方程的异常变化,并在分析中起着重要作用。我们从粘度解决方案的意义上表现出良好的性质。我们还构建了数值有限差分收敛方案。”