摘要:我们使用具有瑞利摩擦的双层线性动力学模型研究了重力波 (GW)、风电场形状和风向对风电场效率和相互作用的影响。使用了五个综合诊断量:总风差、涡度一阶矩、涡轮机功、扰动动能和垂直能量通量。涡轮机阻力对大气所做的功与扰动动能的耗散相平衡。提出了一种基于“涡轮机功”的风电场效率新定义。虽然重力波不会改变总风差或涡度模式,但它们会改变风差的空间模式,通常会降低风电场的效率。重力波会减缓逆风向的风速,并减少对附近下游风电场的尾流影响。重力波还会将部分扰动能量向上传播到高层大气中。我们将这些想法应用到新英格兰海岸拟建的 45 平方公里(15 平方公里)风能区。这些风力发电场彼此接近,因此风力发电机在风力发电场互动中发挥着重要作用,尤其是在冬季西北风吹拂时。控制方程是直接求解的,并使用快速傅里叶变换 (FFT) 求解。线性 FFT 模型的计算速度表明,它未来可用于优化这些风力发电场和其他风力发电场的设计和日常运营。
几年前,当我加入航空学院时,我收到了一套破旧的讲义,并被邀请为研究生讲授飞机稳定性和控制。仔细检查这些笔记,可以发现它们可以追溯到 W.J. Duncan 的工作,这也许并不奇怪,因为 Duncan 是 50 年前克兰菲尔德的第一位空气动力学教授。这无疑是一种荣幸,一开始,能够有机会追随这样一位杰出学者的脚步,我感到非常畏惧。从那个卑微的开始,我对这个主题的理解不断发展,直到现在,这为本书奠定了基础。飞机稳定性和控制的经典线性理论是永恒的,它相对简单,非常出色,并且在空气动力学家的领域中根深蒂固。那么有什么新东西呢?简而言之,没有什么新东西。然而,如今,该材料的使用和应用方式发生了很大变化,这主要是由于数字计算机的出现。计算机被用作分析和设计的主要工具,也是所有先进技术飞机所依赖的现代飞行控制系统的重要组成部分。特别是后者的发展已经并将继续对现在使用主题材料的方式产生重大影响。它不再可能
摘要:由于衰老的电网基础设施和可再生能量的使用增加,微电网(µ网格)已成为有希望的范式。可以合理地期望它们将成为智能电网的基本构建基块之一,因为有效的能源传输和µ网格的协调可以帮助维持区域大规模动力机的稳定性和可靠性。从控制的角度来看,µ网格的关键目标之一是使用本地生成和存储进行负载管理以进行优化的性能。完成此任务可能具有挑战性,尤其是在本地一代在质量和可用性上都无法预测的情况下。本文建议通过制定新的最佳能源管理计划来解决该问题,该计划满足供求的要求。将在以下模型网格中描述的方法作为随机混合动力学系统。跳跃线性理论用于最大化存储和可再生能源的使用,马尔可夫链理论用于模拟基于真实数据的间歇性生成可再生能源的生成。尽管模型本身是相当笼统的,但我们将专注于太阳能,并将相应地定义性能度量。我们将证明在这种情况下,最佳解决方案是具有分段恒定增益的状态反馈定律。的仿真结果以说明这种方法的效果。
我希望在这里发布更新、附加材料和参考文献、链接和勘误表。如果涵盖所有材料并在讲座中提供完整的证明,那么目前教材的内容远远超过一年内可以完成的内容。但是,有几种方法可以根据本书的部分内容来组织一门或两门为期一年的课程。例如,可以只涵盖线性理论,跳过可选部分以及关于非线性可控性和乘数(变分)方法的章节。一门独立的课程可以涵盖更高级的非线性材料。最终,主题应该反映学生和教师的背景和兴趣,我很乐意与潜在的教师讨论教学大纲。我要感谢所有向我发送建议和评论的同事、学生和读者,特别是 Brian Ingalls、Gerardo Lafferriere、Michael Malisoffi 和 Konrad Reif。特别要感谢 Jose Luis Mancilla Aguilar 和 Sarah Koskie,他们指出了大量错别字和错误,并提出了适当的更正。当然,肯定还有很多错误,而这些错误都是我独自承担的。我也再次感谢空军科学研究办公室的持续支持,以及我的家人的无限耐心。
我期望在这里发布更新、附加材料和参考资料、链接和勘误表。如果涵盖所有材料并在讲座中提供完整的证明,文本的当前内容远远超过一年内可以完成的内容。但是,有几种方法可以根据本书的部分内容构建一年的课程或两门这样的课程。例如,可以只涵盖线性理论,跳过可选部分以及关于非线性可控性和乘数(变分)方法的章节。一门独立的、相当独立的课程可以涵盖更高级的非线性材料。最终,主题应该反映学生和教师的背景和兴趣,我很乐意与潜在的教师讨论教学大纲。我要感谢所有向我发送建议和评论的同事、学生和读者,特别是 Brian Ingalls、Gerardo Lafferriere、Michael Malisoffi 和 Konrad Reif。特别感谢 Jose Luis Mancilla Aguilar 和 Sarah Koskie,他们指出了大量错别字和错误,并提出了适当的更正。当然,肯定还有很多错误,而这些错误都是我独自承担的。我还要重申我对空军科学研究办公室的持续支持以及我的家人无限耐心的感谢。
几年前,当我加入航空学院时,我收到了一套破旧的讲义,并被邀请为研究生讲授飞机稳定性和控制。仔细检查这些笔记,可以发现它们可以追溯到 W.J. Duncan 的工作,这也许并不奇怪,因为 Duncan 是 50 年前克兰菲尔德的第一位空气动力学教授。这无疑是一种荣幸,一开始,能够有机会追随这样一位杰出学者的脚步,我感到非常畏惧。从那个卑微的开始,我对这个主题的理解不断发展,直到现在,这为本书奠定了基础。飞机稳定性和控制的经典线性理论是永恒的,它相对简单,非常出色,并且在空气动力学家的领域中根深蒂固。那么有什么新东西呢?简而言之,没有什么新东西。然而,如今,该材料的使用和应用方式发生了很大变化,这主要是由于数字计算机的出现。计算机被用作分析和设计的主要工具,也是所有先进技术飞机所依赖的现代飞行控制系统的重要组成部分。特别是后者的发展已经并将继续对现在使用主题材料的方式产生重大影响。它不再可能
在大范围内,Lyman-α森林提供了对宇宙膨胀历史的见解,而在小尺度上,它对生长历史,暗物质的性质和中微子质量的总和施加了严格的限制。这项工作引入了ForestFlow,这是一个新颖的框架,它弥合了大型和小规模分析之间的差距,这些分析传统上依赖于不同的建模方法。使用条件归一化的流量,ForestFlow预测了两种lyman-α线性偏见(Bδ和Bη)和六个参数,描述了三维频谱功率谱(P 3D)的小规模偏差(p 3D),从线性理论作为体体和核学中培养基的功能。随后将它们与Boltzmann求解器相结合,以对P 3D和从其衍生的任何其他统计数据进行一致的预测,从任意大的尺度到非线性制度。在30个固定和分配的宇宙流体动力学模拟的套件中训练,跨越z = 2至4.5的红移,森林流在描述P 3D和一维闪光功率谱(p 1d)中获得了3和1.5%的精度,从线性量表到k = 5 mpc- = 5 mpc- = 5 mpc-k. = 5 mpc-k. = 4 mpc- = 4 mpc = 4 Mpc = 4 mpc = 4 mpc。由于其条件参数化,森林流对电离历史和两个λCDM模型扩展(大量中微子和曲率)显示出相似的性能,尽管训练集中都不包含这些扩展。该框架将对DESI调查的Lyman-α森林测量结果进行全面宇宙学分析。
几年前,当我加入航空学院时,我收到了一套破旧的讲义,并被邀请为研究生讲授飞机稳定性和控制。检查这些笔记可以发现,它们的根源可以追溯到 W.J. 的工作。Duncan,这也许并不奇怪,因为 Duncan 是 50 年前克兰菲尔德的第一位空气动力学教授。毫无疑问,这是一种荣幸,一开始,能够有机会追随这样一位杰出学者的脚步,这让我感到非常畏惧。从那个卑微的开始,我对这个主题的理解不断发展到现在的形式,为本书奠定了基础。飞机稳定性和控制的经典线性理论是永恒的,它相对简单,非常出色,并且在空气动力学领域中根深蒂固。那么有什么新东西呢?简短的回答是:没有太多。然而,今天,这些材料的使用和应用方式已经发生了很大变化,这主要是由于数字计算机的出现。计算机是分析和设计的主要工具,也是所有先进技术飞机所依赖的现代飞行控制系统的重要组成部分。尤其是后者的发展已经并将继续对现在使用主题材料的方式产生重大影响。仅通过空气动力学设计来调整先进技术飞机的稳定性和控制特性已无法保证良好的飞行和操纵品质。飞行控制系统现在通过以有益的方式增强机身的稳定性和控制特性,在确定飞机的飞行和操纵品质方面发挥着同样重要的作用。因此,该主题必须不断发展,以促进与飞行控制的整合,而今天,综合主题的范围更加广泛,更经常被称为飞行动力学。本书中材料的处理反映了我多年来使用、应用和教授它的个人经验。我的成长经历是作为航空电子行业的系统工程师获得的,当时的重点是飞行控制系统的设计。然而,这种材料至关重要的空气动力学起源仍然清晰可见,对此我不能居功。近年来,除了教授该学科的正式课程外,我还很荣幸花了很多时间在航空学院的机载实验室飞机上教授经典材料。这段经历使我能够将材料从邓肯在航空学院成立初期引入的经典处理方法发展到目前的处理方法,这种处理方法偏向于现代系统应用。现代飞行动力学往往关注更广泛的飞行和操纵品质问题,而不是传统的、更有限的稳定性问题