2020 年 1 月 15 日 — 网络能力既不是静态的也不是线性的;它们可以随着战斗的进行而适应,并且与其他军事能力相结合,可能会产生倍增效应...
航空公司和通勤运营的大多数飞行阶段都采用精心设计的标准程序,这些程序往往是线性的——一个给定的必需任务紧接着另一个必需任务。例如,在起飞阶段,施加动力后会检查发动机性能或功率,而根据特定的飞机和运营商的不同,检查发动机性能或功率后又可能进行各种性能检查。相比之下,飞行前阶段的任务可能不是线性的;飞行员可能需要同时处理飞行计划、天气信息和变化、燃料装载、调度清单和放行、最后一分钟的维护或最低设备清单 (MEL) 项目、值班时间要求和飞机除冰,并且由于“晚期”操作的时间压缩,飞行员经常承受压力。此外,可能存在
因此,我们有一个量子λ演算(它是线性的),这是许多量子编程语言的基础。“量子编程语言在线性类型理论中捕捉了量子计算的思想”(Staton,2015)
• SESC 的生命周期是非线性的。因此,使用现有的分类法很难将相关工作明确地划分为基础研究或应用研究。• SESC 的执行者或开发者遍布各个领域。没有明确的部门专门从事基础或应用(或超越)研究。• 利益相关者多种多样,可以根据 SESC 的开发成熟度进行明确定义。由于生命周期是非线性的,因此无法静态定义利益相关者。• 各个部门(政府、学术界、企业)的优势和劣势尚未得到充分定义。有些优势未得到充分利用。• 从“算法思想”到事实上的基础设施的转变在不到 10 年的时间内并不明显。• 开源许可是保护知识产权的一种手段。但最适合大型、复杂的 SESC 工作,并且可能使未来潜在的私有化变得困难。
2.1.2 模态分析假设模态分析源于结构动力学理论,该理论提供了获取振型和参数的条件和要求。以下一组假设是模态分析的基本假设 [7]:• 系统是线性的• 系统是时不变的• 系统是可观测的如果系统是线性的,则结构对任何输入力组合的响应等于每个单独输入力的响应之和。为了使系统具有时不变性,模态参数(固有频率、阻尼和振型)必须与时间无关或为常数。如果系统是可观测的,则输入和输出测量值包含足够的信息来准确表征系统的行为 [8]。由于非线性行为,具有松散部件的结构不是完全可观测的。如果这些假设对结构成立,则 GVT 将产生线性结构动力学理论预测的结果,并且可以找到模态参数和振型。
2.1.2 模态分析假设 模态分析源于结构动力学理论,该理论提供了获得模态形状和参数的条件和要求。以下一组假设是模态分析的基本假设 [7]: • 系统是线性的 • 系统是时不变的 • 系统是可观测的 如果系统是线性的,则结构对任何输入力组合的响应等于每个单独输入力的响应之和。为了使系统具有时不变性,模态参数(固有频率、阻尼和模态形状)必须与时间无关或为常数。如果系统是可观测的,则输入和输出测量包含足够的信息来准确表征系统的行为 [8]。由于非线性行为,具有松散组件的结构无法完全观测。如果这些假设对结构有效,则 GVT 将产生线性结构动力学理论预测的结果,并且可以找到模态参数和模态形状。
量子计算机天生擅长执行线性运算,因为量子力学本质上是线性的。也就是说,量子系统的时间演化由薛定谔方程(一个线性方程)控制。或者,量子态在必然是线性的幺正运算下演化。然而,要充分利用量子计算的潜力,我们还需要能够扭转量子设备来实现非线性运算。非线性子程序可能在一系列量子算法中发挥关键作用。例如,高效实现非线性运算的能力将开辟在量子硬件上求解非线性方程的新方法 [1-3],应用于从流体动力学到金融等领域。或者,非线性子程序可以提供一种在存在背景噪声的情况下放大信号的方法,从而有助于开发新的错误缓解技术 [4]。最后,目前人们对量子神经网络和量子核方法的潜力非常感兴趣 [ 5 – 8 ]。然而,经典神经网络的大部分能力都来自于非线性激活函数的使用。同样,核方法也依赖于非线性编码。在量子硬件上复制这一点需要能够实现非线性量子操作。虽然量子力学从根本上是线性的,但量子系统往往呈现出非线性演化。这些明显的非线性通常是通过测量和粗粒化引起的。在量子计算的背景下,除了这些工具外,还可以使用经典的后处理和集体操纵给定输入状态的多个副本来引入非线性效应。越来越多的研究致力于开发将非线性引入量子算法的新方法。在量子机器学习的背景下,
持续学习是机器学习中的新兴范式,其中模型以在线方式暴露于来自多个不同分布的数据(即环境),并有望适应分布变化。确切地说,目标是在新环境中表现良好,同时保留了先前环境的性能(即避免“灾难性遗忘”)。虽然这种设置在应用社区中引起了很多关注,但没有理论上的工作甚至正式化了所需的保证。在本文中,我们提出了一个通过特征提取的框架进行持续学习的框架,即在每个环境中都对特征和分类器进行了培训。当功能是线性的时,我们会设计一种有效的基于梯度的算法DPGrad,可以保证在当前环境上表现良好,并避免灾难性的遗忘。在一般情况下,当特征是非线性的时,我们表明这种算法不存在,无论是否有效。
摘要:在这项工作中,我们设计和模拟了具有电荷平衡漂移层的高性能垂直功率MOSFET,这调节了从超级二次到线性的RON-BV关系。所提出的设备是使用超级接线漂移层设计的,该层调节了从超级二次到线性的RON -BV关系。所提出的设备具有从超级接线漂移层隔离的源和通道区域。与Balliga的功绩相比,与其他常规设备相比,该设备的性能显着改善。一项2D TCAD仿真研究表明,外延层厚度为50μm的拟议装置显示,电阻为3.84MΩ.cm2,分解电压为833V,这是以前文献中在此故障电压下在先前文献中报告的电阻最低的电压。此外,还完成了电荷不平衡和电容分析的研究,包括计算门电荷。Balliga为所提出的结构的所有漂移厚度计算的Balliga值(FOM)的值显着超过了迄今为止报道的常规超级连接结构。