稳态视觉诱发电位 (SSVEP) 是一种与周期性视觉刺激频率锁定的大脑活动( Zander 等人,2009 年)。与其他模式(例如运动想象 (Nicolas-Alonso and Gomez-Gil, 2012))相比,SSVEP 具有相对较高的准确度和信息传输率,并且对用户所需的培训最少,因此被广泛应用于脑机接口 (BCI) 中。标准的基于 SSVEP 的 BCI 在工作空间中包含多个刺激,每个刺激以不同的频率闪烁,而脑电图 (EEG) 主要从枕叶测量。测得的 EEG 反映了用户视觉上关注的刺激的频率,以及该频率的谐波。谐波的存在为解码过程提供了更多的参考点,但也给基于 SSVEP 的 BCI 的设计带来了额外的复杂性和挑战。例如,如果同一个 BCI 中对两个不同的刺激同时使用某个频率及其谐波,那么在记录的这两个刺激的脑电图中就会有共同的频率,这可能会混淆解码算法。因此,在文献中,一些研究有意避免在刺激中使用具有共同谐波的频率(Volosyak 等,2009;Chen 等,2015)。这个谐波问题,加上人脑对周期性视觉刺激的响应频率范围有限(Regan,1989),限制了标准基于 SSVEP 的 BCI 中可使用的唯一频率的数量;即,低信噪比脑电图记录和小的频率分离会损害解码性能。因此,在需要大量唯一频率来标记所有目标的场景中使用标准基于 SSVEP 的 BCI 具有挑战性。为了解决这个问题,已经引入了多频刺激方法,在每个刺激中使用多个频率,其中两个频率(双频)是最广泛使用的模态(Shyu 等,2010;Zhang 等,2012;Chen 等,2013;Hwang 等,2013;Kimura 等,2013;Chang 等,2014;Mu 等,2021a)。然而,这些研究主要集中于介绍多频刺激方法,并没有探讨频率选择方法。随着用于标记每个目标的频率数量的增加,在每个刺激或目标上使用多个频率可以成倍增加可以在工作空间中表示的目标数量。多频刺激产生复杂的周期性刺激信号,从而触发更复杂的 SSVEP 反应。在 Mu 等人的研究中, (2021a)表明,多频率 SSVEP 响应不仅包含输入频率及其谐波,还包含输入频率的整数线性组合,这些组合具有在记录的 SSVEP 中更可能观察到的低阶相互作用。注意,相互作用的顺序定义为
(32)紧密结合理论认为价电子更紧密地保持原子,但在整个固体中被视价轨道重叠进行了离域。该模型适用于SI和GE等半导体,ALP和NACL等绝缘体和盐,以及𝑑金属及其化合物。实际上,紧密结合理论与分子轨道(MO)理论具有显着相似之处。电子结构的任何计算都需要选择原子轨道(AO)基集,该集通常是最小的基础集,仅包含价原子轨道。对这些AOS中的每一个都分配了价值轨道能,可以从原子光谱或Hartree-fock计算中进行经验确定,如下所示。10这些能量反映了原子电负性的趋势。然后,构建了这些AOS的对称适应性线性组合(SALC)。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。 使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。 在MO理论中,𝐻具有等于分子中基本AO的数量。 在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。 求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。在MO理论中,𝐻具有等于分子中基本AO的数量。在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。这些数值结果然后用于生成相关信息和图表。对于MO理论,输出包括MO能量图,确定最高占用和最低的无置置的MOS,即HOMO和LUMO,以及使用AO系数进行电子密度分布和键合分析的人群分析。紧密结合计算的结果产生了状态图的电子密度,这是电子能级的准连续分布,可以分解为来自各种轨道或原子成分的态密度,以及相应的FERMI水平,这是Homo的固态类似物的固态类似物。种群分析也可以进行,并提供用于识别重要键合特征的晶体轨道重叠种群(COOP)或汉密尔顿人群(COHP)图。最后,带结构图或能量分散曲线,这些曲线是沿波向量空间中特定方向的波形绘制的能量。
多址信道描述了多个发送者尝试使用某种物理介质将消息转发给单个接收者的情况。在本文中,我们考虑了这种介质仅由单个经典或量子粒子组成的场景。为了精确地比较量子信道和经典信道,我们引入了一个操作框架,其中所有可能的编码策略都只消耗一个粒子。当用于通信时,这种设置体现了用单个粒子构建的多址信道 (MAC)。多方通信任务包括 N 个空间分离的发送者( A 1 , A 2 ,· · · AN )和一个接收者( B )(参见图 1 (a)),其中发送者 A i 位于路径 i 上并希望发送从集合 A i 中抽取的经典消息 ai,接收者 B 获得一些属于集合 B 的输出数据 b,这些数据取决于发送者选择的消息集合( a 1 , a 2 ,· · · ,a N )。理想情况下,b 应该是所有 N 条消息的完美副本,即 b = ( a 1 , a 2 , · · · , a N )。然而在实践中,一些物理限制会阻碍完美的通信。在这种情况下,通信由转移概率 p ( b | a 1 , · · · a N ) 描述。分布 p ( b | a 1 , · · · a N ) 统称为 MAC [ 1 ],即无线通信中所说的上行信道 [ 2 ]。最终,概率 p ( b | a 1 , · · · a N ) 由用于传输信息的特定物理系统决定。我们在此提出的问题是,在仅使用单个粒子实现通信信道且其内部自由度都不可访问的限制下,可以生成哪些 MAC 。更准确地说,信息只能以外部关系自由度进行编码,例如粒子在时空中占据的哪些特定点。我们感兴趣的是比较当使用量子粒子和经典粒子以这种方式传输信息时可以实现的 MAC。在比较经典和量子 MAC 之前,我们根据系统具有的不同级别的共享随机性定义并比较了不同的经典 MAC。这些经典 MAC 分别表示为 CN 、 C ′ N 和 conv[ CN ],代表没有共享随机性、部分共享随机性和完全共享随机性的情况(如图 1 所示)。我们表明,这些 MAC 在具有二进制输入和输出的通信场景中是相同的,即当 |A i | = |B| = 2 时,而对于更一般的情况,它们完全不同。为了方便讨论,我们还引入了所有这些 MAC 的超集,我们称之为可分离 MAC,C (sep) N ,它由具有概率分解 p ( b | a 1 , · · · , a N ) = PN i =1 pigi ( b | ai ) 的 MAC 组成。我们分析了这些 MAC 的结构,并表明它们与二进制情况下更受限制的家族相同。我们的主要结果涉及提供 N 方经典 MAC 的完整表征,这些 MAC 可以从单个经典粒子和受限制的局部数保持 (NP) 操作构建而成。简而言之,NP 操作具有膨胀,其中总粒子数得以保留。主要发现是这些 MAC 完全以消失的二阶干扰项来表征。更准确地说,特定的线性组合
量子计算机已显示出解决传统计算机目前无法解决的特定问题的潜力,但它们在比传统计算机更快地解决工业问题方面仍处于起步阶段[1,2]。量子计算机的近期应用之一是量子化学(见参考文献[3-7]及其参考文献),其重点是波函数理论(WFT),旨在对电子结构问题进行数值精确解。虽然量子相位估计(QPE)算法原则上能够完全解决该问题[8-12],但所需的电路深度阻碍了它们在嘈杂的中尺度量子(NISQ)时代的应用[13]。因此,人们开发出了更有效的算法,例如量子随机漂移协议 [ 14 ] ,或使用幺正函数的线性组合和量子比特化形式直接模拟哈密顿量 [ 15 – 18 ] 。为了更适应 NISQ 时代,人们专门设计了几种变分量子算法(混合量子-经典),用于制备基态 [ 19 – 23 ] 和最近的激发态 [ 24 – 26 ] ,并计算原子力和分子特性 [ 27 – 30 ] 。然而,尽管量子计算机宣布了指数级的加速,但何时才能真正在实践中实现实际的量子优势仍不清楚,而且在不久的将来期待任何有重大影响的应用都是困难的 [ 31 – 34 ] 。事实上,量子算法在量子化学中的应用仍然受到可负担系统规模的限制,因为系统的大小决定了所需的量子比特数。尽管量子设备上的量子比特数有望迅速增加,但未来几年预计还不会出现能够处理真实量子化学系统的稳定机器。在 NISQ 时代的噪声量子计算机中,高精度结果是难以实现的,对于具有重大社会和工业影响的相关应用来说,对化学精度的追求仍然是一条漫长的道路。目前,对化学、凝聚态物理甚至生物学等大型系统的经典计算主要依赖于密度泛函理论 (DFT) [ 35 , 36 ],由于它仅相对于系统尺寸以立方倍数缩放,因此不能预先预期其具有量子优势。相反,最近的研究重点是利用矩阵积态、机器学习和量子计算机构建精确的交换关联 (XC) 密度泛函,而这种密度泛函的精确确定是 QMA 难题 [37]。人们还研究了如何解决 Kohn-Sham 势反演问题,其中在量子计算机上测量随时间演化的多体系统的密度 [44-46]。其他有趣的工作分别将 DFT 及其时间相关版本的 Hohenberg-Kohn 定理和 Runge-Gross 定理推广到量子比特哈密顿量,从而有可能将量子计算中的多体可观测量近似为密度的单量子比特量函数 [ 47 , 48 ]。但上述工作均未旨在解决量子计算机上的 Kohn-Sham (KS) 非相互作用问题。只有少数尝试在量子计算机上执行平均场近似,例如在 12 量子比特平台上具有里程碑意义的 Hartree-Fock 实验 [ 49 ],或在量子退火器上计算单粒子密度矩阵 [ 50 ]。在这两种情况下,都没有预见到实际的量子优势。因此,DFT 仍然应用于经典计算机,尽管有时通过使用嵌入策略在量子计算机上与 WFT 结合 [ 6 , 51 , 52 ]。在这项工作中,我们研究了使用数字量子计算机扩展 DFT 等平均场型方法的好处。讨论了一种可能的量子优势,即 KS 汉密尔顿量与辅助相互作用汉密尔顿量之间的反直觉映射,以计算基础表示,这与几十年来的做法相反。有了这种新的编码,在某些理想情况下,平均场型汉密尔顿量可以在量子计算机上以指数级的速度得到解决,类似于相互作用汉密尔顿量。
这是我想进一步探索的一些概念的集合,我将看到他们带我去哪里。,这可能太冗长了,因为我会想到这个问题。如果您准时短暂,请随时跳过结束,因为那是我认为我对OP要求的答案的答案。我的重点是将分化和集成为符号操作。为了差异化,让我们考虑一个包括常数(可能是复杂的),$ x $的功能符号的$ e $ e $,并且在算术操作和组成下被关闭。我们可以添加更多功能符号,例如$ e^x $,$ \ ln(x)$或$ x^{ - 1} $,但我们假设我们知道如何为添加到$ e $的每个添加的衍生物找到它们的衍生物。仅使用常数和$ x $,我们将多项式作为设置$ e $。更大的选项将是基本功能。如果差异化被视为$ e $中符号内的操作,则根据定义,它的算法是算法,因为我们可以根据$ e $中任何功能 - 符号的衍生物,因为其涵盖了生成$ e $的操作的属性。挑战可能来自确定功能是否属于$ e $。我声称,至少集成与差异化(可能更难)一样困难,这对于多项式来说是显而易见的,但取决于所选的集合$ e $。现在,让我们考虑构建一个适合集成的域,类似于我们处理分化的方式。让我们称此功能符号$ i $的收集。它包含常数和$ x $,其中可能还有其他符号,例如$ e^x $或$ x^{ - 1} $,我们知道它们的积分。这是一个简单的事情。我们假设$ i $在某些操作下关闭:其元素的线性组合以及操作$ \ oplus $(乘以衍生物)和$ \ otimes $(特定的组成操作)。这为我们提供了一个合理的最小域来定义内部集成。在这样的$ i $中,集成成为使用这些操作编写的功能的算法。我声称,在这种情况下,如果我们假设$ i $包含常数,并且满足了三个条件之一,那么推导很简单,从而允许仅使用一个基本操作计算衍生物。可以将OP的问题转化为是否给定的$ E $,我们有一种算法来检查其元素是否是$ i $的一部分,还是使用其积分和某些操作已知的函数 - 符号。此功能取决于$ e $的性质及其可用功能符号。对于$ x $中的多项式,这种算法显然存在。我们不仅有一些情况,即某些$ e $的问题是不可确定的。感谢Richardson的定理,如果$ e $包含$ \ ln(2),\ pi,e^x,e^x,\ sin(x)$,并且还包括$ | x | $以及$ e $中没有原始功能的功能,则条件3可用于$ e $ $ e $的基本功能,以及$ | x | $ | x | $。要验证这种情况,我们可以使用$ e^{x^2} $。定理的有效性源于基本函数$ m(n,x)$的存在,每个自然数$ n $都与0或1相同,但是对于每个自然数$ n $,无论它是相同的0还是1。如果我们通过为每个原始添加符号来关闭$ e $,则此范围消失。给定这样的函数,如果我们可以在$ e $中确定集成,那么对于每个自然数$ n $,无论$ f_n(x):= e^{x^2} m(n,x)$是否可以集成。但是,这将使我们能够弄清楚$ m(n,x)$是0或1何时,因为$ f_n(x)$是可以集成的,当$ m(n,x)= 0 $而不是$ m(n,x)= 1 $时。因此,对于某些类$ e $,我们看到虽然派生是基本的(显示该功能属于$ e $),但集成是不可决定的。这已经表明集成比派生更难(依赖我们集成的函数类别的语句)。观察:上述$ e $集成的不确定性与在$ e $中具有函数符号无关,而没有原始函数 - 符号为$ e $。另一方面,这使得$ e $不是由有限的许多符号生成的,从而使确定何时用$ e $中的符号表示函数更为复杂。因此,对于这个大$ e $的原因,如果我们赋予了我们知道的功能,则可以计算其积分,因为我们假设输入为$ e $。问题仍然存在:$ e $可以比派生更难集成?