摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。