加拿大光源的生物医学成像和治疗设施包括两个梁线,它们覆盖了从13 kevup到140 KEV的X射线能量范围。梁线的设计侧重于临床前成像和兽医科学以及微束辐射疗法中的同步加速器应用。虽然它们仍然是两种光束线活动的主要部分,但最近的许多升级增强了梁线的多功能性和性能,尤其是对于高分辨率的微型造影实验。因此,用户社区已迅速扩展,以包括高级材料,电池,燃料电池,农业和环境研究的研究人员。本文总结了梁属性,描述了端站与检测器池一起描述,并介绍了用户可用的各种X射线成像技术的几个应用程序案例。
本文介绍了一种用于评估受集中力作用的三材料复合梁横向挠度的实验装置。该装置中使用的三种材料是钢、铝和木材。在本实验中,考虑了两种层粘合方法:胶合和螺栓连接。在胶合配置中,三个堆叠的层使用商用胶水沿梁长度相互连接。对于螺栓系统,各层使用四个对称分布的螺栓和螺母连接。将两种粘合方法的梁横向挠度实验结果与理论计算进行了比较。比较结果表明,胶合系统挠度数据与理论更一致。本文还采用了等效截面法来求解复合梁弯曲应力。最后,彻底研究了复合梁的关键几何和材料参数对梁弯曲应力的影响,重点是承受机械弯曲载荷的电子组件的结构分析。
只需拍摄一张照片(拍摄桥梁),即可轻松创建 3D 模型,从而可以重现实际现场,避免因疏忽而导致的重新检查。此外,第三方也更容易检查 3D 模型,从而提高检查质量。 ・您创建的 3D 模型可以共享。如果有 3D 模型,我们可以解释图纸
在通过雷达或电动检测系统进行威胁检测后,光束导演使用高分辨率热成像器获取目标。然后使用超鼻涕的视场跟踪目标,并通过高频带宽度,快速转向镜跟踪指定的瞄准点。
光纤束拆分器用于将光从一个纤维分为两个或更多纤维。首先将输入纤维的光准直接发送,然后通过光束分裂的视频发送将其分为两部分。然后将结果输出梁聚焦到输出纤维中。1xn和2xn拆分器都可以以这种方式构建多达八个或以上的输出,而低回报损失和低插入损失。此设计非常灵活,使人们可以在不同端口上使用不同的纤维类型,并在内部使用不同的梁分离器光学器件。常规制造的定制设计结合了循环器,两极分化的溅射器和非极化拆分器。可以用永久连接到每个端口(辫子样式)的纤维或每个端口上的插座制成拆分器。我们还可以用Bui lt-In beamsplitters为激光或激光二极管源构建源源。有关详细信息,请联系Oz。
辐射风险•为了安全地执行,您的程序需要在X射线指导下插入该行。X射线是一种电离辐射。研究表明,暴露于高剂量的电离辐射的人在暴露几年或几十年后会增加患癌症的机会。但是,尽管更复杂或更困难的病例可能需要更高的辐射剂量,但与此过程相关的辐射暴露量很小。•是对您的医生和放射医生的评估,将执行该程序的好处大于暴露于辐射的风险。专业的放射科医生和放射线照相师将确保在手术过程中保持辐射暴露尽可能低。•我对在此过程中接触辐射的风险有任何疑问,您可以在同意过程中与将执行您的程序执行的放射科医生进行进一步讨论。•如果您认为自己可能怀孕,请通知临床团队。
图3。sfg对(a)泵梁从855到880 nm的不同波长的光谱依赖性,以及(b)1525至1565 nm的信号梁。在前一种情况下,信号的波长固定为1545 nm,而在后一种情况下,泵的波长固定在875 nm处。在(a)和(b)所示的光谱中,将泵和信号梁设置为极化状态,从而提供最大的非线性发射。(c)由元表面(彩色线)产生的三种非线性排放的强度,与SHG 2 P,SFG和SHG 2 S相对应,以及差距半导体材料的灭绝系数(带正方形的灰色线)作为波长的功能。插图中显示了与SFG非线性过程相对应的能级图。(d)SFG强度是泵梁(底部)和信号梁(顶部)中平均功率的函数。实验数据(在对数字图中显示的实验数据)表明SFG具有泵和信号梁的功率的线性依赖性。
1.5建议和实验时间请求通用建议系统使APS和Beam线管理能够收集和记录实验时间请求,并且该系统的数据支持DOE规定的报告活动。在此系统中,一项建议描述了要执行的工作,并且针对该提案确定用户想要在何时何地进行此工作的实验时间请求(ETR)。提案和第一个ETR共同创建。对于随后的同一工作访问,必须针对原始提案创建新的梁时间请求。因此,建议可以具有多个ETR。在单个建议类型部分中提供了寿命。各种APS用户系统(例如,通用提案系统,光束线调度系统,实验安全评估表格和实验表的结束)将每个光束使用与一组数据相关联:•提案•实验时间请求(ETR)•Beam Time请求(ETR)•梁时属性(例如,提案类型,预先/非普遍/非普遍,访问,
在本文中,使用第三阶的锯齿形理论研究了包含功能分级的皮肤和金属(类型-S)或陶瓷芯(type-h)的三明治(SW)梁的屈曲响应。通过指数和功率定律量化功能分级(FG)层中材料特性的变化。使用高阶项以及锯齿形因子来评估剪切变形的效果,假定位移。面积内载荷被考虑。使用虚拟工作的原理得出了管理方程式。与高阶剪切变形理论不同,该模型实现了无应力边界,并且C0是连续的,因此,不需要任何后处理方法。本模型显示,由于假定位移中的包含曲折因子,厚度方向上横向应力的准确变化,并且与计算结果的层数无关。数值解决方案是通过使用三个带有7DOF/节点的三明治梁的有限元元素到达的。本文的新颖性在于对FGSW梁的曲折屈曲分析进行厚度拉伸。本文介绍了功率定律因子,最终条件,纵横比和层压方案对FGM夹心梁屈曲响应的影响。发现数值结果符合现有结果。通过增加S型梁的功率定律因子来提高屈曲强度,而对于所有类型的终端条件,在H型梁中都可以看到相反的行为。最终条件在决定FGSW梁的屈曲反应中起着重要作用。指数法律控制的FGSW梁对S型梁表现出较高的屈曲抗性,而对于几乎所有层压方案和最终条件,S型梁型梁的屈曲抗性都稍低。还提出了一些新的结果,这些结果将作为沿并行方向进行未来研究的基准。