抽象引入囊性纤维化(CF)是一种限制生命的常染色体隐性遗传条件。它是由编码氯化物和碳酸氢盐传统通道的基因突变引起的。X射线速度法(XV)是一种新型的X射线成像形式,可以通过呼吸周期生成肺通风数据。XV技术已在多种动物模型中得到验证,包括CF肺疾病的β -ENAC小鼠模型。此后在成人人类受试者的早期临床试验中进行了评估。但是,小儿队列中的数据很少,包括CF。这项试验研究的目的是研究对CF的儿科患者以及患有正常肺部的患者进行单中心队列研究的可行性,以证明在这些队列中对XV进行进一步研究的适当性。方法和分析这是一项横截面单中心,试点研究。进行XV肺成像以及配对的肺功能测试将招募3-18岁的儿童。该研究的目的是招募20名没有CF的儿童,患有正常肺和20名CF儿童。主要结果将是招募儿童和进行XV测试的可行性。次要结果将包括XV与肺功能和结构的当前评估之间的比较。道德和传播该项目获得了妇女和儿童医院人类研究伦理委员会授予的伦理批准(HREC ID 2021/ HRE00396)。发现将通过同行评审的出版和会议来传播。试用注册号ACTRN12623000109606。
未来战略性 X 射线天文学任务(如 AXIS [ 1 ])建议将大收集面积反射镜与大型、快速、宽视场成像仪相结合。高帧速率对于最大限度地减少点源的堆积影响以及减轻粒子背景对微弱弥散气体研究的影响至关重要。同时,还必须保持低噪音和出色的软 X 射线能量响应以满足关键的科学目标。除了所需的帧速率外,最先进的 CCD 几乎能够提供此类任务的所有关键性能指标。大型探测器的快速帧速率可带来非常高的有效像素速率。我们斯坦福大学的团队正在与麻省理工学院 (MIT) 和麻省理工学院林肯实验室 (MIT-LL) 合作,通过多管齐下的方法解决这一技术差距。为了实现更高的帧速率,我们正在努力提高单个输出的读出速度和每个 CCD 可以并行运行的输出数量。图 1 显示了适用于 AXIS 焦平面的可能 CCD 模块概念。单个输出的速度提高源于 CCD 输出级优化、通过使用专用 ASIC 减少寄生输出负载以及对视频波形使用数字信号处理。读出 ASIC 还允许我们以较小的占用空间和适中的功耗并行操作多个输出。我们还在研究 MIT-LL 制造的一种新型探测器技术,即单电子灵敏读出(以下简称 SiSeRO),虽然它还不能达到单电子噪声性能,但为实现极低噪声、高速 X 射线探测器提供了一条有希望的途径。