(2008) 指出,RSM 可以清楚地预测参数交互作用和平方项的显著性。RSM 技术可以根据显著参数、它们的交互作用和平方项对响应进行建模。因此,该方法是一种比田口方法更好的优化工具。田口方法的大多数应用都解决单响应问题,对多响应问题的关注有限 (Su, 2013)。在解决多响应问题时,应用传统的田口方法会导致在确定最佳参数设置时产生冲突。也就是说,当找到满足质量特性 A 的最佳参数组合时,可能无法满足质量特性 B。在实践中,工程师通常使用反复试验来调整引线键合参数。为了在不损失质量的情况下降低制造成本,铜线
摘要在50年前,当最初将电线拉测试方法添加到MIL-STD 883中时,在方法D的条件D条件D条件D条件D中,键强度(破坏性键拉测试),测试程序和最小拉力值是基于大多数超声楔键合的拉力测试,仅是几个不同直径的超声楔形铝和金线。将原始数据的最小拉力值推断为覆盖金线和铝线的较宽的电线直径范围。自从这种测试方法发布以来,电子产业已经生产了铜超声楔键,大约15年前采用了大约15年前的铜热球键合,甚至开发了银热球球键的利基市场。该行业还建立了特殊债券,例如安全债券,反向债券也称为“球上的针迹”,甚至是多环线和丝带。在所有时间里,均未对2011年方法中的测试程序和最小拉力值进行审查,以确定它们对这些新材料或新型债券的适当性,即使该行业对所有人都广泛提及了测试方法,因此,默认情况下,该行业接受了所有人的使用。2013年底,我领导了JEDEC的JC14.1小组委员会,包装设备的可靠性测试方法,以更新JEDEC JESD22-B116,Ball Bond剪切剪切测试方法,以扩大其范围,以包括Cu Ball Bonds的剪切。工作组花了三年时间来解决必要的技术问题,以确保修订后的测试方法充分解决了铜球债券的剪切,并提出了最低可接受的剪切值。关键词工作组通过图纸和图像制作了一个大大改进的文档,描绘了黄金和铜键的不同剪切失败模式,并添加了几个信息丰富的附件,以帮助执行测试方法。到2018年,显然,电子行业中最常见的电线拉力测试方法都没有在更新其文档以包括CU线债券方面取得任何重大进展。因此,JC14.1工作组同意与JC-13.7小组委员会(新的电子设备技术)共同合作,以在JC14.1下创建一个新的,拉力拉力测试方法文档,该文档将成为JESD22-B116的伴侣。此新文档将使用2011,条件C和D作为基础,但在其范围上扩展以覆盖超声波楔和热球键的铜线键。新的测试方法将描述Ball Pull测试的过程和针脚拉的测试,该过程通过AEC Q006引用了铜键,使用铜(CU)电线互连对组件的资格要求。测试方法还将提供有关如何对当今使用的几种不同键类型进行拉力测试的指导,包括反向键,多环键和堆叠的模具。工作组计划提出JC14.1将在JESD47中引用的铜线键的最小拉值,这是集成电路的压力测试驱动的资格。After the joint working group completes its work, which is targeted for some time in 2022, JC13.7 would then be able to use the output of this working group to update Method 2011 Conditions C & D. This paper will first briefly discuss the updates made to B116 to cover Cu wire bonds, but mainly focus on the work that has so far been completed by the joint working group, including a general outline of the proposed new document, JESD22-B120, Wire Bond Pull Test 方法 。
2 Fraunhofer IZM Berlin Gustav-Meyer-Allee 25, 13355 Berlin Germany Email: martin.schneider-ramelow@izm.fraunhofer.de 摘要 本文介绍了德语国家和欧洲国家广泛使用的引线键合标准 DVS-2811。该标准于 1996 年推出,现在包含所有当前使用的键合方法的定义和限值,包括其他所有官方标准中都没有的重/粗引线键合连接的剪切测试。特别是考虑到电池键合用户数量的不断增长,指定适当的粗引线测试限值具有重要意义。除了概述当前状态之外,还展望了未来 1-2 年的进一步更新。 关键词 引线键合、拉力测试、剪切测试、质量、标准、测试 I. 简介 标准和细间距引线键合技术继续经历小幅发展,材料更加精炼、几何尺寸更小,可靠性要求也不断变化。当前可用的引线键合标准无法回答在测试此类先进引线键合触点时出现的问题。需要在这一领域开展活动。向新技术领域的发展在重引线键合中更为明显。一个例子是,用于生产电池模块的大面积键合机的需求不断增加。此外,新功能已集成到现有的键合机机器平台中,包括激光键合技术(F&K Delvotec)和智能焊接技术(Hesse Mechatronics、Kulicke & Soffa)。目前没有跟上这种快速发展的一个方面是过程控制和质量检查的标准化。现有标准(如 MIL-883、ASTM F1269 或 JEDEC 22B116B)不包含任何测试粗线(直径 > 100 µm)的指导。偏离此几何形状(如重带或超声波焊接成型部件或接线片)也没有得到解决。这给用户、机器供应商和最终客户带来了挑战。测试规范、工具属性、极限值等的定义必须单独讨论并达成一致。25 年来,DVS 公告 2811 一直
1.1.1。球键故障球键故障是微电子包装中最常见的故障模式[2]。通常是由于热老化引起的金属间生长。来自金属间层中的微裂纹并削弱了键[3]。球键合AU,Cu,Ag基线到Al金属化形成热老化的金属间化合物(铝制)。[4]在不同的金属超声波或热音线键中有限的界面IMC形成会增加键强度。但是,过度的IMC形成可能导致债券的性能下降。IMC的厚度增加会产生较高的电阻,从而导致流动流动时较高的热量产生。这会产生乘数效应,因为由于电阻率升高而引起的加热促进了粘合界面中其他IMC的形成[5]。imcs的形成以及界面处的相关空隙和裂纹决定键的强度和可靠性。IMC的形成对粘结强度有益,但是它们的过度生长可以增加键和接触电阻的脆性,从而导致键失败[6]。
操作频率。................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................调制。..................................................................................................E.R.P. : ...................................................150 μW Security Code combinations number....19683. Access Co des ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 256。 临时访问COD ES .................................................................................. 256。 传输持续时间...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................按 / 1秒。 Range in open space............................typically 229 to 492 ft / 70 to 150 m.工作温度........................................................................................................................................... 尺寸。 ........................................................................................ 6.1“ x 4.52” x 1.96”。 重量................................................................................................................. 10.5盎司 / 300 gr。 IP保护等级。 ......................................................................................................................................................................................................................................................................E.R.P.: ...................................................150 μW Security Code combinations number....19683.Access Co des ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 256。临时访问COD ES .................................................................................. 256。传输持续时间...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................按 / 1秒。Range in open space............................typically 229 to 492 ft / 70 to 150 m.工作温度...........................................................................................................................................尺寸。........................................................................................ 6.1“ x 4.52” x 1.96”。重量................................................................................................................. 10.5盎司 / 300 gr。IP保护等级。......................................................................................................................................................................................................................................................................
在功率循环实验中,需要估算开关的温度。当一个开关由几个并联的芯片组成时,这些芯片的温度可能不一样。在没有对每个芯片进行单独监控的情况下,通常假设平均温度是由最常见的 TSEP(热敏电参数)如 Von 估算的。然而,每个芯片的温度都是未知的。一些研究解释并评估了初始温度不平衡 [1]。当模块由于热机械循环而老化时,引线键合会退化和剥离,从而改变流向芯片的电流路径,从而改变损耗和温度分布。[2, 3] 分别在单芯片和多芯片的情况下评估了估算温度(即 Von)随退化的变化。然而,文献中没有通过实验获得温度分布随退化的变化。
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。