在过去的几年中,机械杂草控制已成为一种更有效,更经济的方法。本研究提出了电子驱动源的概念和除草机制,以在30 cm的间距上进行作物行进行除草作业。针对沙质壤土条件设计,开发和评估了一个电子驱动的机械排间除草机。结果表明,操作速度和除草型鼓直径在1%和5%的显着性水平下显着影响功耗和除草效率。在3 km/h的工作速度下,观察到平均除草效率,现场容量,现场效率和植物损伤为91.68%,0.049 ha/h,而3.18%。观察到除草剂的平均功耗为189 W.开发除草剂的田间容量是轮ho头的3-4倍,从而降低了所需的人力和运营成本。用鼓和工具组合的除草机制降低了杂草逃生的机会并提高除草效率。此外,除草剂的电子驱动系统大大降低了振动,从而提高了操作员的工作效率。总体而言,开发的电子驱动除草剂有可能成为小型农民的有效工具,以较少的繁琐手术和更高的效率进行除草作业。
摘要:串扰是量子计算设备的主要噪声源。量子计算中多条指令的并行执行会产生串扰,串扰会引起信号线间的耦合以及信号线间的互感、互容,破坏量子态,导致程序无法正确执行。克服串扰是量子纠错和大规模容错量子计算的关键前提。本文提出了一种基于多指令交换规则和持续时间的量子计算机串扰抑制方法。首先,针对量子计算设备上可执行的大多数量子门,提出一种多指令交换规则。多指令交换规则对量子电路中的量子门进行重新排序,将量子电路中串扰较大的双量子门分离。然后,根据不同量子门的持续时间插入时间赌注,在量子计算设备执行量子电路的过程中小心地分离串扰较大的量子门,以降低串扰对电路保真度的影响。多个基准实验验证了所提方法的有效性。与以前的技术相比,所提出的方法平均提高了15.97%的保真度。
数字继电器比机电和固态继电器具有更大的灵活性。在机电继电器中,磁路、气隙等结构细节用于设计各种操作特性。由于固态继电器主要使用模拟电路,因此它们比相应的机电继电器具有更多的创新性,而机电继电器无疑是坚固的。但是,固态继电器无法具有计算机辅助继电器所具有的灵活性。例如,使用计算机辅助继电器,为电压信号提供幅度缩放和相移以产生从相到中性电压的线间电压要简单得多,因为它可以由程序处理。计算机继电器可以编程。此外,由于编程功能,可以为多个继电器提供通用硬件,从而降低库存成本。
BPP:政策情景 BPS:最佳政策情景 CCGT:闭式循环燃气轮机 CFPP:燃煤电厂 CPS:当前政策情景 DMO:国内市场义务 DPS:延迟政策情景 GHG:温室气体 GW:吉瓦 GWh:吉瓦时 HBA:电力价格 Hz:赫兹 IBT:母线间变压器 kV:千伏 LOLP:负载损失概率 LTS:长期战略 MEMR:能源和矿产资源部 MVA:兆伏安 MVAr:兆伏安无功功率 NDC:国家自主贡献 NERC:北美电力可靠性公司 OCGT:开式循环燃气轮机 PHES:抽水蓄能 PLN:国家电力清单(州电力)电力公司) pu : 每单位 RE : 可再生能源 RUEN : Rencana Umum Energi Nasional RUPTL : Rencana Usaha Penyediaan Tenaga Listrik (电力供应业务计划) Solar PV : 太阳能光伏 TWh : 太瓦时 VREs : 可变可再生能源
Mossman 变电站由两条古老的 66kV 木杆线供电,这些线路来自 Powerlink 的 Turkinje 132/66kV 变电站,通过 Mossman 1 (MOSS 1) 和 Mossman 2 (MOSS 2) 馈线(分别建于 1975 年和 1958 年)。Mossman 变电站由两条 66 kV 架空馈线组成,为两个室外 66 kV 母线段、四个断路器 (CB) 舱和隔离器供电。两台 1963 年的 10MVA 66/22kV 变压器为室外 22kV 场站供电,包括两个 22 kV 母线段、七个 22 kV 断路器和十三个隔离器。二次系统、通信和保护设备安装在变电站控制大楼内。四条 Mossman 22kV 馈线与相邻的 132/22kV Craiglie 变电站 22kV 配电网络共享馈线内联络线和馈线间联络线,该配电网络为大约 4280 名客户供电。
non-mde:还包括:AN/ARC-231 RT-1808A(或未来更换)VHF/UHF/LOS SATCOM收音机; 4月39C(V)1/4雷达警告接收器; AVR-2B激光检测集; APX-123A识别朋友或敌人(IFF)发件(或将来替换);带有KY-100M的ARC-220高频(HF)无线电; VRC- 100个地面站; AN/PYQ-10简单钥匙加载器(SKL); KIV-77常见的识别朋友或敌人(IFF)加密贴花计算机; KY-100M;通信安全性(COMSEC)加密设备AN/ARN-147(V)VHF OMNI方向范围(VOR)/仪器着陆系统(ILS)接收器无线电; AN/ARN-149(V)低频(LF)/自动方向查找器(ADF)无线电接收器; AN/ARN-153战术空中导航系统(TACAN)接收器 - 发射器; AN/APN-209雷达高度计; AN/ARC-210收音机; EBC-406HM紧急定位器发射器(ELT);加密的飞机无线间交流系统(EAWIS);改进的头部显示(ihud);信号数据转换器的IHUD;信号数据转换器用于头顶显示器(HUD);具有电光和红外线(EO/IR)功能的前瞻性红外(FLIR); EO/IR机舱监控系统; EO/IR数字视频
在金属中,可以通过可见的波长光激发荷载体,以形成振荡和费米水平附近的内映射,对应于电子的等离子体振荡。一旦激发,由于金属的有限程度,将等离子局部在界面上局部,形成局部的表面等离子体共振(LSPRS),或者沿延伸的界面作为表面等离子体plason Polaritons(spps)沿延伸界面。[1,2]等离子体的领域旨在精确地在纳米级的磁光,并具有有希望的应用,包括亚波伦长波导,[3,4]纳米antenennas,[5]超镜头,[6]亚波长度成像,[7] Nano-civillely,[7] Nano-civillery,[8,8,9]和生物体。[10]控制这种激发需要考虑使用的材料和所形成的几何形状。寻找可能充当等离子应用可行候选的新金属或掺杂的半导管仍然是一个重大问题。[11]在费米水平附近填充的状态贡献了能够对等离子体振荡进行的电子,而在费米水平以上的空状态则被内标转换填充。频带间的转变并不有助于等离子体的振荡,而通过光子吸收激发它们是一种损失机制。因此,完美的等离子金属将在费米水平附近的电子能够在材料中传播,并具有低标记损耗且无带间跃迁的材料。高电导率是一个有益的特征,因为它表明电子在材料中传播时,即由于诱导电子的电子 - 电子散射而导致的低损失。[1]但是,这不是一个足够的标准,因为弱电子 - 电子散射并不排除光线间过渡吸收的光的可能性,而不是令人兴奋的沿金属 - 介电界面传播电子模式。[12]
糖尿病会影响全球4.25亿个人,预计在未来20年中,数字将增加到6亿人(1)。在1型糖尿病(T1D)中,患者经历胰岛素产生降低引起的胰岛素缺乏症,而在2型糖尿病(T2D)中,患者经历了胰岛素抵抗(IR),通常与肥胖有关(2)。导致IR发展的主要因素是增加氧化应激,高血糖和脂质水平升高(3)。尽管有助于控制血糖水平的疗法进步,但心血管并发症仍然是该人群发病率和死亡率的主要原因(2、4、5)。在心脏中,IR会导致钙处理,线粒体功能障碍和代谢不足的失调,导致一系列病理,其中包括心肌 - 心脏情感功能障碍,舒张性障碍功能障碍,心肌细胞死亡,心肌死亡和内膜骨化(6,7,7,7,7,7,7)。与IR相关的血管事件通常与高血压和增强的血栓形成环境有关(8、9)。虽然阻塞性血凝块可以导致心肌梗塞,脑血管事件或关键的肢体缺血,并且由于血小板与止血蛋白之间的复杂相互作用而发生(10)。在这种高度异质的人群中,发展此类并发症的风险是可变的,并取决于一系列因素,包括年龄,糖尿病持续时间,血糖控制和IR。在内分泌学领域的这一研究主题中,我们介绍了8篇文章,旨在探索IR与心血管健康之间的关系。他等人。动脉硬化是糖尿病的众所周知的并发症(11)。检查了放射线间脂肪组织(IMAT)分析是否可以用作指示T2D患者动脉硬化的诊断措施。总共包括549例新诊断的T2D患者,并使用颈动脉斑块负担来表明动脉粥样硬化。构建了三个模型以评估动脉粥样硬化的风险:临床模型,一个放射组学模型(基于胸部CT图像的IMAT分析)和临床放射线组合组合模型(一种整合临床放射学特征的模型)。使用曲线和DELONG测试下的区域比较了这三个模型的性能。临床 - 放射线组合模型和放射线学模型表明,在表明动脉粥样硬化方面的性能更好。作者