我们介绍了 LeoLabs 的全球相控阵雷达网络。LeoLabs 的网络由四个运行中的雷达站组成,两个超高频雷达站和两个 S 波段雷达站,还有一个正在建设中的 S 波段雷达站。我们展示了雷达网络性能的定量分析,包括网络和组件级性能指标。与独立数据集的比较证明了仪器的准确性和精确度,而雷达站之间的比较证明了 LeoLabs 测量的自洽性和 LeoLabs 轨道状态矢量估计的精确度。我们还展示了模拟网络在编目和跟踪以前未编目的驻留空间物体方面的性能。我们展示了除了跟踪 LEO 中的 RSO 之外,网络如何用于各种任务。我们提供了网络在发射和早期轨道阶段操作期间的性能特征。最后,我们表明 LeoLabs 的雷达能够探测地球静止轨道 (GEO) 上的物体。这证明相控阵雷达是跟踪地球静止轨道物体的可行技术。
摘要。流程图用作整体视觉辅助工具,以人类可以解释的方式封装逻辑流和特定的组件级信息。然而,由于其复杂的逻辑结构和文本丰富的性质,这些二十一的自动解析构成了重大挑战。在本文中,我们介绍了GenFlowChart,这是一个新型框架,该框架采用生成AI来增强流程图的解析和不明显。首先,使用该段的任何模型(SAM),部署了一个尖端的分割模型来描述流程图中的各种组件和几何形状。sec-ond,光学特征识别(OCR)用于提取属于每个组件中的文本,以进行更深的功能理解。最后,我们使用提示工程进行发电的AI制定提示,以集成分段结果并提取的文本,从而重建流程图的工作流。为了验证GenFlowchart的有效性,我们评估了其在多个流程图上的性能,并根据几种基线方法进行基准测试。GenFlowChart可从https://github.com/responsibleailab/genflowchart获得。
必须向所有其他供应商或运送产品时提及PCN号。PCN编号的使用仅限于产品,如下所述。也请参考与EMVCO的任何通信中的PCN号码。EMVCO安全评估过程旨在提供与一般安全性能特征以及适用于智能卡相关产品和基于IC芯片的代币的有价值和实用信息。EMVCO安全评估过程旨在确保在产品家族和组件级别上为这些产品建立强大的安全基础。EMVCO安全评估过程是与新攻击技术和技术有关的不断发展的过程。EMVCO保留在卡的整个一生中执行新/随机安全测试的权利,这可能会影响认证。EMVCO安全评估流程文件和EMVCO安全评估认证合同中包含EMVCO颁发的EMVCO合规证书的完整条款和条件。产品提供商在分发此EMVCO合规性证书时应全部交付。。
可靠性:不同的概念 设计可靠性取决于组件级的可靠性规范。由于装配错误和组件不合格,生产产品的可靠性可能与设计可靠性不同。生产产品的可靠性是产品的“固有”可靠性。产品需要运输到市场,通常还要储存一段时间,然后才能出售。一台设备的销售可靠性取决于机械负载(运输过程中的振动引起)、冲击负载(处理不当引起)、储存时间和储存环境(如温度、湿度等)。因此,销售可靠性可能与固有可靠性不同。产品售出后,可以再储存一段时间(如果该设备作为备用),也可以立即投入使用。现场设备可靠性性能取决于存储时间和环境以及其他几个操作因素,如使用强度(决定设备的负载 - 电气、机械、热、化学)、使用模式(连续使用还是间歇使用)和操作环境(如温度、湿度、振动、污染等),在某些情况下还取决于操作员。操作中的可靠性性能通常称为“现场可靠性”。图 1(来自 MURTHY 等,2007d)显示了这些不同的可靠性概念如何依次关联以及影响它们的因素。
摘要 飞行控制系统必须满足极高的功能完整性和可用性水平。控制算法由机载计算机 (OBC) 处理。为了满足机载计算机的可靠性要求,必须采用各种类型的冗余。在本文中,我们关注了用于航空航天应用的机载计算机的三重模块冗余 (TMR)。在所提出的架构中,使用指定的传感器测量控制输入和系统状态。根据获取的数据,处理单元处理任务场景和控制算法。此后,执行器将结果应用于系统。根据系统要求,使用组件级的 TMR 技术来提高 OBC 的可靠性。OBC 的所有组成模块,包括处理单元、总线接口、传感器、执行器和 IO 设备,都受益于三重冗余。案例研究表明,类似的架构用于高可靠性的客机飞行计算机,只是我们的架构基于可用的多核微控制器。对设计的机载计算机的可靠性进行了分析评估,表明所提出的 OBC 可以满足可靠性要求。关键词:机载计算机、三模冗余、可靠性
铜水微型热管和 k-core 封装石墨热管理技术已开发用于高性能 ASIC(倒装芯片和微处理器)的直接热管理,并已成功获得太空飞行状态的资格。该技术可实现高性能、组件级直接冷却,并增强从底盘接口到空间散热器的底盘级热扩散。该技术使未来电信卫星有效载荷的散热发生了重大变化。建造了一个由三个代表性面包板底盘组成的资格测试车辆,带有微型热管热管理系统 (TMS),用于代表性倒装芯片微处理器热负荷的直接热管理以及与底盘级 k-Core 扩散器的热连接。飞行演示测试包括真空环境中的性能测试、热特性、老化和寿命测试以及热机械测试。微型热管和 k-Core TMS 技术已达到 TRL 8,可部署在直接微处理器热管理和热链接应用中,以克服传导传热的局限性。本文概述了该技术、资格测试计划和资格测试数据。
电动汽车 (EV) 的双能量存储系统 (DESS) 的重点一直是降低成本和提高性能。虽然这些对于开发更好的系统很重要,但不应忽视系统和组件级选择对环境的影响。当前人们对电动汽车的兴趣主要是出于环境原因,例如减缓气候变化和减少化石燃料的使用,因此在设计阶段开发环保替代品非常重要。评估发展中和成熟的化学反应对环境的影响可以为现在需要选择的技术以及未来需要开发的技术提供宝贵的见解。本文介绍了从摇篮到大门(即考虑所有原材料和生产要素;但是,“使用”阶段和回收不在考虑范围内)的生命周期评估,评估了带有锂离子和水性铝离子电池的 DESS 以及带有锂离子电池和超级电容器的 DESS。在公交车和轿车案例研究中,还将它们与全锂离子电动汽车电池在环境影响方面进行了比较。主要研究结果表明,使用 DESS 总体上减少了车辆使用寿命内对环境的影响,并为进一步开发用于此应用的水系铝离子电池提供了论据。
良好的热系统设计对于确保适当的系统性能,可靠性和寿命至关重要。如图1。不同系统级别的热因子“上面”,PCB设计(层,垫尺寸。)和空气流是影响散热的主要因素。在组件级别上,许多因素都会影响热阻力,例如包装类型,包装材料,芯片尺寸,功率耗散等。”图2。传热的形式。”显示了设备级别的热量耗散路径的示意图。在组件水平上进行传热的主要机制是对流(通常是通过空气流从包装表面到周围环境的热传递)和传导(从模具表面通过粘结线和铅框从模具表面和铅框架传递到PC板)。通过辐射(电磁能传递)进行的传热通常可以忽略不计于闪存设备。在Macronix用于闪存的塑料包中,通常5〜20%的热量消散是通过对流的包装顶部通过包装的顶部,而其余的80〜95%是通过PCB通过传导。”图3。A)。热电阻与层流气流”,图3。B)。热电阻与芯片尺寸”和”图3。C)。热阻力与PCB设计“显示了各种因素对热阻力的影响。图2。传热形式。
卡尔曼滤波器组在飞机发动机故障诊断中的应用 Takahisa Kobayashi QSS Group, Inc. 俄亥俄州克利夫兰 44135 电子邮件:Takahisa.Kobayashi@grc.nasa.gov Donald L. Simon 美国陆军研究实验室 格伦研究中心 俄亥俄州克利夫兰 44135 电子邮件:Donald.L.Simon@grc.nasa.gov 摘要 本文将卡尔曼滤波器组应用于飞机燃气涡轮发动机传感器和执行器故障检测和隔离 (FDI) 以及组件故障检测。这种方法使用多个卡尔曼滤波器,每个滤波器都用于检测特定的传感器或执行器故障。如果确实发生故障,除使用正确假设的滤波器之外的所有滤波器都会产生较大的估计误差,从而隔离特定故障。同时,估计了一组指示发动机部件性能的参数,以检测突然退化。将所提出的 FDI 方法应用于标称和老化条件下的非线性发动机仿真,并给出了巡航运行条件下各种发动机故障的评估结果。证明了所提出的方法能够可靠地检测和隔离传感器和执行器故障。术语 A16 可变旁通管道面积 A8 喷嘴面积 BST 增压器 CLM 组件级模型 FAN 风扇 FDI 故障检测和隔离 FOD 异物损坏 HPC 高压压缩机 HPT 高压涡轮 LPT 低压涡轮 P27 HPC 入口压力 PS15 旁通管道静压 PS3 燃烧室入口静压 PS56 LPT 出口静压 T27D 增压器入口温度 T56 LPT 出口温度
为了满足未来对月球永久阴影区域的科学探索的发电需求,我们展示了一种新颖的激光功率传输方法。一支本科多学科学生团队汇集了电气工程、机械工程、计算机科学和光学方面的专业知识,以应对 NASA 的功率传输挑战。可以使用高效、高功率的激光器将功率从持续被阳光照射的陨石坑边缘传输到永久阴影陨石坑内部的远距离资产,那里预计有大量的水冰。扩展和准直光学器件用于减少十公里长距离的激光束发散。光束扫描系统以及资产上的回射器用于定位和跟踪具有象限光电探测器排列的移动资产。万向架式光伏接收器通过照明源进行跟踪,并将光能转换为电能,供资产的电池系统和其他科学仪器使用。定制印刷电路板跟踪光伏阵列的最大功率点,并为资产的电池充电提供电力。通过为移动探测车供电,展示了所有组件的全面集成。该项目研究了设计考虑因素、组件级性能测量、集成系统性能评估以及进一步改进系统的未来机会。此外,我们正在为同行评审的光学期刊准备一份出版物,详细介绍我们的系统和研究结果。