3。负责新产品制程的导入,并进行制程的检测定期检测制程设备的重点参数。5。持续改善现有生产制程。6。调查并处理生产制程的异常状况。7。负责技术文件之撰写与维护。8。负责每日产量及良率的分析、监控及改善。9。推行生产制程的相关教育训练计划。1。制定制造程序和产品标准。2。评估过程项目计划并制定最合适的制造过程。3。负责引入新产品制造过程和过程测试,以便可以稳定生产新产品并符合相关标准。4。定期测试过程设备的关键参数。5。不断改善现有的生产过程。6。在生产过程中调查并处理异常条件。7。负责撰写和维护技术文档。8。负责分析,监视和改善每日产量和产量。9。实施与生产过程有关的教育和培训计划。
Romina Marone 1.2 * 、Emmanuelle Landmann 1.2 * 、Anna Devaux 1.2 * 、Rosalba Lepore 1,2,3,4 * 、Denis Seyres 1.2 、Jessica Zuin 1.2 、Thomas Burgold 1.2 、Corinne Engdahl 1.2 、Giuseppina Capoferri 1.2 、Alessandro Dell ' Aglio 1.2 、Cl´ement Larrue 5 、Federico Simonetta 6.7 、Julia Rositzka 8.9 、Manuel Rhiel 8.9 、Geoffroy Andrieux 10 、Danielle N. Gallagher 11 Markus S. Schr oder 11,Am´elie Wiederkehr 4,Alessandro Sinopoli 4,Valentin Do Sacramento 3,Anna Haydn 4,Laura Garcia-Prat 3,Christopher 4,Christopher 4 ,14,Matthew Porteus 12,J´er ˆ OME Tamburini 7,Jacob E. Corn 11,Toni Cathomen 8,9,Tatjana I. Cornu 8,9,Stefanie Urlinger 3,4 ,以及 Lukas T. Jeker 1,2
摘要 扩大可用于蛋白质可视化和操作的试剂库将有助于了解其功能。与目标蛋白质相连并被现有结合剂(如纳米抗体)识别的短表位标签有助于进行蛋白质研究,因为无需分离针对它们的新抗体。纳米抗体比传统抗体有几个优势,因为它们可以表达并用作体内蛋白质可视化和操作的工具。在这里,我们描述了两个短(<15aa)纳米标签表位 127D01 和 VHH05,以及它们相应的高亲和力纳米抗体。我们展示了它们在果蝇体内蛋白质检测和重新定位、直接和间接免疫荧光、免疫印迹和免疫沉淀中的应用。我们进一步表明,CRISPR 介导的基因靶向提供了一种用纳米标签标记内源性蛋白质的直接方法。纳米标签的单个副本,无论其位置如何,都足以进行检测。这种多功能且经过验证的标签和纳米抗体工具箱将作为广泛应用的资源,包括果蝇及其他物种的功能研究。
图 2:PD-L1:Affibody 复合物的结构预测结果。A) PDB 中发现的 PD-L1 复合物的天然接触以红色突出显示 B) PD-L1 和 Affibody 结合方向的比较分析:Alphafold2 Multimer、ClusPro 和 ZDock 预测。每种预测方法排名前 3 位的结构描绘了 PD-L1 和 Affibody 的结合方向。所有预测中两个主要方向是一致的:一个平行于 beta 片层,另一个垂直于它。这突出了计算方法在捕获该复合物的假定结合模式方面的融合。C) 两个提议方向的说明。DF) 从平行和垂直方向的十六个 100 纳秒全原子 MD 模拟重复中获得的独立属性的箱线图。D) 拟合到 PD-L1 后的 Affibody RMSD。 E) 使用分子力学泊松-玻尔兹曼表面积 (MM-PBSA) 方法估计结合自由能。F) 用垂直平均值归一化的界面残基相关性总和。这些基于 MD 的指标的综合分析强烈支持 PD-L1 和 Affibody 之间的垂直结合模式是最可能的配置,强调了计算评估方法的稳健性和一致性。
薄膜科学与工程(薄膜科学与工程) 3 3 全英授课 晶体结构与分析(晶体结构与分析) 3 3 材料分析(材料分析) 3 3 全英授课 电浆制造工艺与应用(等离子体加工与应用) 3 3 电子显微镜实务一(电子显微镜实践1) 2 2 材料功能与设计(电子显微镜的功能与设计)材料) 3 3 进阶表面处理(Advanced Surface Treatment) 3 3 全英授课半导体工程(Semiconductor Engineering) 3 3 太阳能电池特论(Special Topics on Solar Cells) 3 3 高分子材料特论(Special Topics on Polymer Materials) 3 3 人工智慧概论(Introduction to Artificial Intelligence) 3 3 电化学特论(Special Topics on Electrochemistry) 3 3 全英授课英语授课课程《高等材料选择与设计》(Advanced Material Selection and Design) 3 3 有机光电材料与元件有机光电材料与器件 3 3 固体物理(Solid StatePhysics) 3 3 全英授课英语授课课程奈米检测技术(Nano-writing Technology) 3 3 电子实验室实务二(Practice of Electron Microscopy) 2) 1 1 半导体元件物理(Semiconductor Device Chemistry) 3 3 全英授课 复合材料(Composite Materials) 3 3 全英授课 进阶能源物理材料(Advanced Energy Materials) 3 3 全英授课 奈米生医与绿色材料(纳米与绿色材料) 3 3 奈米科技与应用(纳米技术与应用) 3 3 全英授课 光电工程与材料(光电工程与材料) 3 3 封装工艺与材料(包装与材料) 3 3 薄膜磨润学(薄膜摩擦学) 3 3
crispr-cas3:以与CRISPR-CAS9相同的方式切割双链DNA,但CRRNA(指南)识别顺序很长
尖端技术疫苗组学是免疫遗传学和免疫基因组学两门学科与系统生物学和免疫分析知识的结合,用于设计针对传染病的疫苗。在我们目前的研究中,我们结合 B 细胞和 T 细胞表位预测,然后进行分子对接,研发了一种针对 β 冠状病毒非结构蛋白 4 的基于表位的肽疫苗。在这里,我们收集了 β 冠状病毒同源非结构蛋白 4 的蛋白质序列,并通过系统发育研究调查其中存在的保守区域,以确定蛋白质最具免疫原性的部分。在目标蛋白质的已识别区域中,来自 38-47 区域的肽序列 IRNTTNPSAR 和来自 76-90 位置的序列 PTDTYTSVYLGKFRG 分别被视为最潜在的 B 细胞和 T 细胞表位。此外,该预测的T细胞表位PTDTYTSVY和PTDTYTSVYLGKFRG分别与MHC等位基因蛋白HLA-A*01:01和HLA-DRB5*01:01相互作用,IC 50值较低。这些表位与MHC I分子和MHC II分子的α螺旋表位结合槽完美契合,结合能分别为-725.0 Kcal/mole和-786.0 Kcal/mole,显示出与MHC分子结合的稳定性。该MHC限制性表位PTDTYTSVY在世界人口覆盖率中也显示出50.16%的良好保守性。该MHC I HLA-A*01:01等位基因也存在于58.87%的中国人口中。因此,经过进一步的实验研究,表位IRNTTNPSAR和PTDTYTSVYLGKFRG可被视为冠状病毒肽基疫苗的潜在肽。
化学蛋白质组学是表征药物作用方式的关键技术,因为它可以直接识别生物活性化合物的蛋白质靶点,并有助于开发优化的小分子化合物。目前的方法无法识别化合物的蛋白质靶点,也无法在未事先标记或修改的情况下检测配体和蛋白质靶点之间的相互作用表面。为了解决这一限制,我们在此开发了 LiP-Quant,这是一种基于有限蛋白水解与质谱相结合的药物靶点反卷积流程,可跨物种(包括人类细胞)工作。我们使用机器学习来辨别指示药物结合的特征,并将它们整合成一个分数,以识别小分子的蛋白质靶点并估算它们的结合位点。我们展示了跨化合物类别的药物靶点识别,包括靶向激酶、磷酸酶和膜蛋白的药物。 LiP-Quant 估计整个细胞裂解物中化合物结合位点的半最大有效浓度,正确区分药物与同源蛋白质的结合,并识别杀菌剂研究化合物迄今为止未知的目标。