灰质(GM)萎缩在多发性硬化症,神经肌炎选择性谱系障碍[NMOSD;抗Aquaporin-4抗体阳性(AQP4+)和 - 阴性(AQP4-)亚型]和髓磷脂少突胶质细胞糖蛋白抗体相关疾病(Mogad)。揭示这些疾病中脑萎缩的发病机理将有助于其鉴别诊断并指导治疗策略。确定多发性硬化症,AQP4+ NMOSD,AQP4-NMOSD和MOGAD中GM萎缩的神经生物学基础,我们进行了虚拟的组织学分析,该虚拟组织学分析将T1加权图像派生的GM Atrophy+ Gene表达与MultiCentRe COLES的患者相关联,与3224患者有关75例AQP4 -NMOSD患者,47例Mogad患者和2169名健康对照组患者。首先,使用Cohen d在具有多发性硬化症,AQP4+ NMOSD,AQP4- NMOSD或MOGAD或MOGAD和健康对照组之间的Cohen D之间确定了整个皮质和皮质下区域的GM间GM萎缩谱。然后将GM萎缩谱分别与从艾伦人脑图集提取的基因表达水平分别在空间上相关。最后,我们使用亚组分析探索了临床功能相关的GM萎缩的虚拟组织学,该分析通过身体残疾,疾病持续时间,复发次数,病变负担和认知功能进行分层。多发性硬化症显示出严重的GM萎缩模式,主要涉及皮层核和脑干。AQP4+ NMOSD显示出明显的GM萎缩的广泛模式,主要位于枕骨Tex和小脑中。AQP4- NMOSD显示出轻度的GM萎缩模式,主要位于额叶和顶叶皮层。mogad显示GM萎缩主要涉及额叶和颞皮质。High expres sion of genes specific to microglia, astrocytes, oligodendrocytes and endothelial cells in multiple sclerosis, S1 pyram idal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD, had spatial correlations with GM atrophy profile, while no atrophy profile-related gene expression was found in AQP4 - NMOSD。与四种NeuroInflam疾病中的临床纤维相关GM萎缩的虚拟组织学主要指向共享的神经元和内皮细胞。独特的潜在虚拟组织学模式是小胶质细胞,星形胶质细胞和少突胶质细胞,用于多发性巩膜; AQP4+ NMOSD的星形胶质细胞;和摩盖德的少突胶质细胞。神经元和内皮细胞是在这些神经炎症性疾病中共有的靶标。这些发现可能有助于对这些疾病的鉴别诊断,并促进最佳治疗策略的使用。
图 1:组织学图谱中的 NextBrain,具有优点()、缺点()和中立点。()。(A)打印的图谱 [1],其中包含一组稀疏的手动追踪切片 [1]。(BG)覆盖范围有限的特定 ROI 的组织学图谱:(B)手动追踪的基底神经节切片 [8];(C)确定性丘脑图谱的 3D 渲染 [11];(DF)追踪的 MRI 切片、组织学切片和海马图谱的 3D 渲染 [12];(G)我们的丘脑概率图谱切片 [14]。(HN)整个人脑的组织学图谱:(H)BigBrain 的 3D 重建切片 [13];(I)MNI 模板上的 Julich-Brain 标签切片; (J) 标记的 Allen 参考脑组织学切片 [7];(K) 使用受 (J) 启发的协议标记 MNI 模板;(LN) AHEAD 脑的 MRI、组织学和 3D 渲染 [22]。(OS) 我们的新图谱 NextBrain 包括五个标本的密集 3D 组织学 (OP) 和全面的手动标记 (Q),从而可以构建概率图谱 (R),该图谱可与贝叶斯技术相结合,自动标记体内 MRI 扫描中的 333 个 ROI (S)。
组织具有两个相互作用的组件:细胞和细胞外基质(ECM)。ECM由多种大分子组成,其中大多数形成复杂的结构,例如胶原蛋白原纤维。ECM支持细胞,并包含将营养物质运输到细胞的流体,并将其废物和分泌产物带走。细胞在局部产生ECM,然后受基质分子强烈影响。许多基质成分与跨越细胞膜并连接到细胞内部的结构成分的特定细胞表面受体结合,形成连续体,其中细胞和ECM以良好的协调方式一起发挥作用。在开发过程中,细胞及其相关的矩阵在功能方面变得专业,并引起具有特征性结构特征的基本类型的组织。器官是由这些组织的有序组合形成的,它们的精确排列允许每个器官和整个生物体的功能。
用于各种牙科手术,例如纸浆封盖和根管处理[3]。尽管组成差异,但这些材料表现出相似的生物活性特性。常用的生物活性牙髓水泥包括钙的材料,矿物三氧化物骨料(MTA)和生物植物。在其中,由于MTA在密封和处理根管方面的高生物相容性和有效性,因此受到了广泛的青睐[4]。MTA包含硅酸钙和其他钙化合物的少量。 MTA的不同品牌,例如Protot MTA,Angelus MTA和MTA Plus,为临床使用提供了各种选择。 但是,可用的生物活性材料的多样性需要明确指导其在不同的临床方案中适当应用。 尽管MTA具有优势,但成本,设定时间和牙齿变色等问题仍促使市场引入了新的生物活性牙髓水泥[3]。MTA包含硅酸钙和其他钙化合物的少量。MTA的不同品牌,例如Protot MTA,Angelus MTA和MTA Plus,为临床使用提供了各种选择。但是,可用的生物活性材料的多样性需要明确指导其在不同的临床方案中适当应用。尽管MTA具有优势,但成本,设定时间和牙齿变色等问题仍促使市场引入了新的生物活性牙髓水泥[3]。
摘要背景。越来越多的研究表明,使用从成像数据中提取的放射组学特征可以预测各种恶性肿瘤的组织学或遗传信息。本研究旨在通过内部和外部验证来研究基于 MRI 的放射组学在预测脑转移瘤原发性肿瘤中的作用,并使用过采样技术来解决类别不平衡问题。方法。这项经 IRB 批准的回顾性多中心研究包括肺癌、黑色素瘤、乳腺癌、结直肠癌和其他原发性实体的组合异质组(5 类分类)的脑转移瘤。2003 年至 2021 年期间从 231 名患者(545 个转移瘤)获取了本地数据。分别对来自公开的斯坦福 BrainMetShare 和加州大学旧金山分校脑转移瘤立体定向放射外科数据集的 82 名患者(280 个转移瘤)和 258 名患者(809 个转移瘤)进行了外部验证。预处理包括脑提取、偏差校正、配准、强度归一化和半手动二元肿瘤分割。从每个序列(8 次分解)的 T1w(± 对比度)、液体衰减反转恢复 (FLAIR) 和小波变换中提取了 2528 个放射组学特征。使用原始数据和过采样数据的选定特征训练随机森林分类器(5 倍交叉验证),并使用准确度、精确度、召回率、F1 分数和受试者工作特征曲线下面积 (AUC) 在内部/外部保留测试集上进行评估。结果。过采样并没有改善内部和外部测试集上整体不令人满意的性能。不正确的数据分区(训练/验证/测试分割之前的过采样)会导致对模型性能的严重高估。结论。应严格评估放射组学模型从成像中预测组织学或基因组数据的能力;外部验证至关重要。
自闭症谱系障碍是一种发育疾病,会干扰沟通和行为。在任何年龄都可以检测到自闭症,但症状在生命的头两年中在临床上变得明显。主要症状与社会交流,互动,单调行动以及对象和事件中的享受丧失有关。此外,它还与其他心理障碍有关,例如注意力不足的多动症和癫痫病。早期诊断为连续干扰的疾病对完善口头结局和升级关键症状非常有帮助。如今,在幼儿和青少年组中,神经解剖学参与在这种疾病中,如额叶,颞叶和顶叶的皮质组织,杏仁核和海马,在小脑下cerebellar vermis和Hippocampus,以及剩下的小脑小叶。
1 法国巴黎居里研究所; 2 日本福冈九州大学医院; 3 美国加利福尼亚州洛杉矶加州大学洛杉矶分校大卫格芬医学院; 4 法国南特大学医院; 5 荷兰鹿特丹伊拉斯姆斯 MC 癌症研究所; 6 韩国首尔 Severance 医院延世癌症中心; 10 月 7 日,西班牙马德里康普顿斯大学和 CiberOnc 大学医院,CNIO-H12O 肺癌科; 8 西班牙塞维利亚维尔根马卡雷纳大学医院; 9 仙台厚生医院,日本仙台; 10 西班牙马拉加 IBIMA 大学医院区域和维多利亚圣母医学中心肿瘤内科中心; 11 法国里昂莱昂贝拉尔中心; 12 法国斯特拉斯堡斯特拉斯堡大学医院 (CHRU); 13 西班牙巴塞罗那 Vall d'Hebron 大学医院; 14 法国雷恩 Pontchaillou 医院; 15 美国马萨诸塞州波士顿丹娜法伯癌症研究所; 16 第一三共株式会社,美国新泽西州巴斯金里奇; 17 韩国首尔成均馆大学医学院三星医疗中心。
1 3p-Medicine实验室,Gda´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´nsk,波兰; wiktoria.stankowska@gumed.edu.pl(W.S.); katarzyna.duzowska@gumed.edu.pl(K.D.); marcin.jakalski@gumed.edu.pl(M.J.); magdalena.wojcik@gumed.edu.pl(m.w.-z。); kinga.drezek-chyla@gumed.edu.pl(k.d.-c.); arkadiusz.piotrowski@gumed.edu.pl(A.P.)2乌普萨拉大学的免疫,遗传学与病理学和科学系,BMC,Husargatan 3,751 08 Uppsala,瑞典; daniil.sarkisyan@igp.uu.se(D.S.); bozena.bruhn-olszewska@igp.uu.se(b.b.-o.); hanna.davies@igp.uu.se(H.D.)3 GDA´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´NSK,波兰; michal.bienkowski@gumed.edu.pl(m.b。 ); rafal.peksa@gumed.edu.pl(R.P. ); wojciech.biernat@gumed.edu.pl(W.B.) 4肿瘤病理学系,玛丽亚·斯克洛德斯卡(MariaSkłodowska)国家肿瘤学研究所,加恩卡斯卡(Garncarska)11,31-115 krak rand; agnieszka.harazin@krakow.nio.gov.pl(A.H.-L。); marcin.przewoznik@krakow.nio.gov.pl(M.P. ); Michael.hultstrom@mcb.uu.se(M.H. ); robert.frithiof@uu.se(r.f.) ); Jan.dumanski@igp.uu.se(J.P.D.) †这些作者为这项工作做出了同样的贡献。 ‡这些作者对这项工作也同样贡献。3 GDA´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´NSK,波兰; michal.bienkowski@gumed.edu.pl(m.b。); rafal.peksa@gumed.edu.pl(R.P.); wojciech.biernat@gumed.edu.pl(W.B.)4肿瘤病理学系,玛丽亚·斯克洛德斯卡(MariaSkłodowska)国家肿瘤学研究所,加恩卡斯卡(Garncarska)11,31-115 krak rand; agnieszka.harazin@krakow.nio.gov.pl(A.H.-L。); marcin.przewoznik@krakow.nio.gov.pl(M.P.); Michael.hultstrom@mcb.uu.se(M.H.); robert.frithiof@uu.se(r.f.)); Jan.dumanski@igp.uu.se(J.P.D.)†这些作者为这项工作做出了同样的贡献。‡这些作者对这项工作也同样贡献。); agnieszka.adamczyk@onkologia.krakow.pl(a.a.); janusz.rys@krakow.nio.gov.pl(J.R.)5泌尿外科和肿瘤学诊所,波兰Piechowskiego的Ko´scierzyna专科医院karsas@o2.pl 6 piechowskiego的Ko´scierzyna专科医院一般和肿瘤外科诊所,波兰,83-400 Ko´scierzyna; wojmakar@wp.pl 7 Gda´nsk医科大学泌尿外科系和诊所M. Sklodowskiej-curie 3A,80-210 GDA´nsk,波兰; marcin.matuszewski@gumed.edu.edu.pl 8人畜共科科学中心,乌普萨拉大学医学科学系,阿卡德米斯卡·舒克胡斯(Akademiska Sjukhuset),瑞典751 85乌普萨拉(751 85); josef.jarhult@medsci.uu.se 9外科科学系,麻醉学和重症监护室,乌普萨拉大学,Akademiska Sjukhuset,751 85 Uppsala,瑞典; miklos.lipcsey@uu.se(M.L。10 Hedenstierna实验室,Uppsala大学外科科学系,Akademiska sjukhuset,751 85 Uppsala,瑞典11综合生理学,医学细胞生物学系,Uppsala大学,Uppsala大学,Uppsala大学,BMC,Husargatan 3,Husargatan 3,751 08 Uppsala,uppsala,uppsala,uppsala,sweden uppsala,sweden upean sweden of sweden utia, Skłodowska-Curie国家肿瘤学研究所,Garncarska 11,31-115 KrakÓW,波兰; jtjmed@interia.pl 13哈佛医学院遗传学系,美国马萨诸塞州波士顿大街77号,美国马萨诸塞州02115; giulio@broadinstitute.org 14生物学和药物植物学系GDA´nsk,Hallera,Hallera 107,80-416 GDA´nsk,波兰 *通信:
肺癌的特征是,很大一部分被视为不可切除的,局部晚期或转移性疾病,在各种普遍的癌症中,即使在诊断时,它也像预后较差一样脱颖而出[1,2]。进步已经彻底改变了肺癌的治疗,基于铂的Che-Marterape是长期存在的基石。在2000年代初期,靶向表皮生长因子受体(EGFR)的酪氨酸激酶抑制剂的驱动,靶向治疗已显着提高了肺癌患者的存活[3]。 在EGFR之后,对包括ALK,ROS-1和KRAS在内的肺癌的分子遗传学的更深入了解,导致基于个体致癌遗传特征的个性化治疗的新分子靶标鉴定了新的分子靶标。 但是,超过一半的肺癌患者无法受益于靶向疗法,这对其应用构成了主要限制[3]。 以的形式出现免疫疗法引发了肺癌治疗的第三大革命在2000年代初期,靶向表皮生长因子受体(EGFR)的酪氨酸激酶抑制剂的驱动,靶向治疗已显着提高了肺癌患者的存活[3]。在EGFR之后,对包括ALK,ROS-1和KRAS在内的肺癌的分子遗传学的更深入了解,导致基于个体致癌遗传特征的个性化治疗的新分子靶标鉴定了新的分子靶标。但是,超过一半的肺癌患者无法受益于靶向疗法,这对其应用构成了主要限制[3]。以