4.1 AHG WA (2015) Pty Ltd T/A Mercedes-Benz Perth & Westpoint Star Mercedes-Benz & Ors v Mercedes-Benz Australia/Pacific Pty Ltd [2023] FCA 1022 ..............................................................24 4.2 Honda Australia ordered to pay significant damages to Astoria Brighton - Brighton Automotive Holdings Pty Ltd (as trustee for Brighton Honda Unit Trust) v Honda Australia Pty Ltd (No 2) [2024] VSC 262 ............................................................................................................................................26 4.3 Glascott v Mercedes-Benz Financial Services Australia Pty Ltd [2024] QDC 127 .............................27 4.4 Honda Australia Fined for Breach of Information Sharing Requirements under the MVIS Scheme29 4.5 Wawryk v Mercedes-Benz Australia/Pacific Pty Ltd (Subpoena Ruling) [2024] VSC 120.................30 4.6 Automotive Invest Pty Limited v Commissioner of Taxation [2024] HCA 36 ...................................32 4.7 Williams v Toyota Motor Corp Australia [2022] FCA 344;丰田汽车公司澳大利亚有限公司诉威廉姆斯(第2号)[2023] FCAFC 70; Williams v Toyota Motor Corp Australia Ltd (ACN 009 686 097) [2024] HCATrans 21 (awaiting decision) .....................................................................................................34 Our National Automotive Team ........................................................................................................36
1 约翰霍普金斯大学医学院放射肿瘤学和分子放射科学系,美国马里兰州巴尔的摩 21231;ycao17@bwh.harvard.edu(YC) 2 哈佛医学院丹娜法伯/布莱根和妇女医院癌症中心放射肿瘤学系,美国马萨诸塞州波士顿 02115 3 约翰霍普金斯大学医学院 Russell H. Morgan 放射学和放射科学系,美国马里兰州巴尔的摩 21231;michael.a.jacobs@uth.tmc.edu(MAJ) 4 马里兰大学医学智能成像(UM2ii)中心、马里兰大学医学院诊断放射学和核医学系,美国马里兰州巴尔的摩 20201 5 北卡罗来纳大学放射肿瘤学系,北卡罗来纳州教堂山 27514,美国; xuguang_chen@med.unc.edu 6 美国明尼苏达州罗切斯特市梅奥诊所神经放射科 55905 7 美国马里兰州巴尔的摩市约翰霍普金斯大学医学院神经外科系 21231 8 美国德克萨斯州休斯顿市麦戈文医学院诊断与介入影像系 77030 * 通讯地址:kleinla@jhmi.edu
∗ 基金项目 : 科技创新 2030“ 脑科学与类脑研究 ” 重大项目 (2022ZD0208601), 国家自然科学基金 (62076250,62204204), 陕西
抽象背景。全脑脑是罕见的(1/16,000个Livebirths),并且在早期胚胎发生期间发生严重的脑恶性肿瘤。畸形源于缺乏或不完整的前脑分裂,与改变的胚胎模式有关。目标。叙事审查,以识别和评估有关非遗传风险因素的证据。结果。所涉及的基因包括Sonic Hedgehog,锌指蛋白,六个同源物3。具有周围感受性高血糖的植物糖尿病是主要的非遗传危险因素。神经外胚层中氧化应激的增加,特别是神经rest细胞,似乎是主要机制。几种广泛的污染物,包括无机的ARSE-NIC,PFA和PCB,可能会通过改变元素因素(包括脂质和胰岛素)来增加造口前糖尿病的风险。“易感性受试者稀有暴露量”的情况表明,暴露于饮食污染物可能会增加植物前糖尿病的风险,因此在易感胚胎中会增加全脑脑的风险。结论。这种复杂的途径是合理的,值得研究;更重要的是,它突出了评估风险因素以及相关的不确定的重要性,以支持多因素畸形的主要预防策略。
人类社交能力的基础是大脑的人际同步能力。基于实验室的实验性神经心理学研究表明,脑间同步可以通过技术实现。然而,在野外部署这些技术并研究其用户体验方面,人类交互所擅长的领域却还很缺乏。随着移动大脑传感和刺激技术的进步,我们发现人类交互有机会研究野外脑间同步的增强。我们设计了“PsiNet”,这是第一款旨在增强野外脑间同步的可穿戴脑对脑系统。参与者访谈说明了三个主题,描述了调节脑间同步的用户体验:超意识、关系互动和自我消解。我们提出这三个主题来协助人类交互理论家讨论脑间同步体验。我们还为设计脑间同步的人机交互从业者提出了三种实用的设计策略,并希望我们的工作能够指导人机交互未来的脑对脑体验,促进人类之间的联系。
预后参数和模型被认为有助于改善脑转移瘤 (BM) 患者的治疗结果。本研究旨在调查基于计算机断层扫描 (CT) 放射组学的列线图预测接受全脑放射治疗 (WBRT) 的非小细胞肺癌 (NSCLC) BM 患者生存期的可行性。回顾性分析了 2012 年 1 月至 2016 年 12 月接受 WBRT 的 195 名 NSCLC BM 患者。使用最小绝对收缩和选择算子 (LASSO) 回归从治疗前 CT 图像中提取和选择放射组学特征。通过整合放射组学特征和临床因素来开发和评估列线图以预测个体患者的生存期。根据 LASSO Cox 回归从 105 个放射组学特征中筛选出 5 个放射组学特征。根据放射组学评分(Rad-score)的最佳截断值,将患者分为低危(Rad-score <= − 0.14)组和高危(Rad-score > − 0.14)组。多变量分析表明,性别、卡氏评分(KPS)和 Rad-score 是总生存期(OS)的独立预测因素。训练队列和验证队列中列线图的一致性指数(C 指数)分别为 0.726 和 0.660。短期和长期生存预测的曲线下面积(AUC)分别为 0.786 和 0.788。综上所述,基于 CT 图像的放射组学特征和临床因素的列线图可用于预测接受 WBRT 的 NSCLC BM 患者的 OS。
研究文章 转录组学和脑体积测定确定 CIRS 患者认知障碍的原因并支持使用 VIP 在治疗中 Shoemaker R、Heyman A、Lark David 通讯作者:R Shoemaker,ritchieshoemaker@msn.com 摘要 执行认知功能问题,包括近期记忆、注意力、找词、思维混乱、吸收能力下降和定向障碍,可能有多种疾病来源,包括炎症、代谢紊乱和退化过程,这些通常见于存在慢性疲劳的疾病。多种共存认知症状所带来的问题是发现:1) 单一诊断测试,该测试有临床医生与脑损伤患者合作使用的历史,例如 NeuroQuant (NQ);2) 价格合理、准确、可靠,可用作衡量益处或缺乏益处的标准;3) 治疗的筛查、因果关系和顺序特征。此外,脑损伤的复杂性向我们展示了人机测试的局限性,而转录组学的进步引领了基因激活研究之后诊断和治疗的新世界。本报告的目的是回顾性地研究白细胞转录组测试的结果,结合脑体积成像研究,在一项观察性研究中提供基础,以确定因暴露于水损建筑物 (WDB) 内部环境而导致脑损伤的具体原因。通过将转录组异常与已知的皮质灰质损伤体积模式、上侧脑室扩大和灰质核萎缩进行比较,我们证明了采用非侵入性方法治疗脑损伤的可行性,为之前被证明有效的新疗法做准备。我们打算在后续研究中以前后顺序的方式使用这些测试来显示慢性炎症反应综合征 (CIRS) 中发现的代谢和炎症状况的纠正。缩写词:CFI:慢性疲劳病 CG:皮质灰质萎缩 CIRS:慢性炎症反应综合征 NA:灰质核萎缩 SLV:上侧脑室 VDAC:电压依赖性阴离子通道 WDB:水损建筑 VIP:血管活性肠多肽
在支持情绪调节的额叶网络中的破坏长期与适应不良的儿童侵略有关。然而,尚未测试人类连接组中的大规模功能网络与侵略性行为之间的连通性。通过使用数据驱动的机器学习方法,我们表明情绪处理过程中连接组的功能组织预测了儿童侵略性的严重性(n = 129)。在涉及认知控制(额叶),社会功能(默认模式)和情感处理(皮层)的大规模网络内和之间确定了侵略性的连接性预测。在青少年脑认知发展研究的独立样本中,在功能连接的发现中进行了样本外复制和概括(n = 1,791; n = 1,701)。这些结果定义了基于新连通性的儿童侵略网络,该网络可以用作生物标志物,以告知有针对性的治疗以进行攻击。
图 1:信息子图提取的动机:(a)演示了从群体水平连接组数据中获取边推理矩阵的过程;(b)说明常用的社区检测结果(例如使用随机块模型)无法检测到任何信息子图;(c)显示现有密集子图发现结果的结果;(d)描述了一种理想的信息子图检测程序,该程序可以识别由信息边组成的有组织的、生物学上可解释的拓扑结构。(d)中的结果基于 ADSD 方法(详细信息请参阅结果部分)。