太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
雏菊家族,阿斯特拉科。该物种由Short(2009)描述为“多年生的根茎草药,俯卧,到50厘米长,无毛,除了非常偶尔的多细胞,圆锥形的腺体头发c。0.1-0.15毫米长。Leaves basal and cauline, alternate, lowermost leaves sometimes tapering to a petiole-like base but most leaves manifestly sessile and often subamplexicaul, somewhat narrowly oblong or narrowly elliptic or sometimes ovate-lanceolate to lanceolate or rarely a few oblanceolate, 11–38 mm long, 3.5–11 mm wide, leaf apices usually truncate and 3-dentate, the teeth of about equal length and宽度很少,很少逐渐缩小到一个点,否则叶边缘否则整个或有时在每个边缘上有1或2个额外的短而狭窄的横向叶,并且通常沿层长的长度沿着大约1⁄2左右,所有叶子都叶片柔软或边缘,偶尔的垂直茎的垂直腺体小于c。长0.1毫米。Capitula c。直径为6毫米,在肩cap上明显超过上叶。 片段的片段,重叠,卵形至披针形或椭圆形到狭窄的披针形,长2.2-2.5毫米,宽0.7-0.8毫米,宽,subobtuse,subobtuse,较薄的草药,主要是透明的,透明的,微光,几乎是散落的,除了散射的毛发毛发,除了散落的毛发毛发,均为斑点;立体观念分裂。 插座尺寸,是无毛的。 射线小花c。 40在最大的吉柱中;花冠c。 8.5毫米长,宽1.2–1.3毫米,白色,顶端有4个静脉。 Apex Untobed或2或3个几乎无法辨别的裂片;样式c。 1.45毫米长。 雄蕊5;细丝衣领几乎笔直或向底座扩张;花药1.25–1.36毫米长,Capitula c。直径为6毫米,在肩cap上明显超过上叶。片段的片段,重叠,卵形至披针形或椭圆形到狭窄的披针形,长2.2-2.5毫米,宽0.7-0.8毫米,宽,subobtuse,subobtuse,较薄的草药,主要是透明的,透明的,微光,几乎是散落的,除了散射的毛发毛发,除了散落的毛发毛发,均为斑点;立体观念分裂。插座尺寸,是无毛的。射线小花c。40在最大的吉柱中;花冠c。 8.5毫米长,宽1.2–1.3毫米,白色,顶端有4个静脉。 Apex Untobed或2或3个几乎无法辨别的裂片;样式c。 1.45毫米长。雄蕊5;细丝衣领几乎笔直或向底座扩张;花药1.25–1.36毫米长,圆盘小花也许c。最大的Capitula中有80个或更多;花冠带2.1–2.45毫米长,外部有散射的,长的,腺体的头发,5叶,黄色,没有顶毛的裂片,静脉延伸到裂片的顶点。
doi:https://dx.doi.org/10.30919/es1156设计和制造具有3D打印和生命周期分析,可回收可回收聚合物的H-Darrieus Windrieus WindrieusandrésAndrésFolivera f olivera f olivera,1,1,2 Edwin Chica,2,*和Henry a Gorcolado 1,* Arfording Inderdive Issrunt(3)彻底改变了具有复杂形状的组件的开发,从而可以使用可塑性和易于重塑的空气动力学材料,从而实现更好的发达表面,从而有利于空气动力学的形状;涉及流体动力学,能源和运输行业。从这一进步中受益的一个行业是风能。在这项研究中,小型的H-Darrieus型风力涡轮机的设计旨在由3D打印机制造,使用碳纤维的聚对乙二醇terephathalate(PETG)的细丝。涡轮机是在实验室尺度上制造的,高度和直径分别为0.20 m和0.22 m。该模型后来在风洞中进行了测试。在尖端速度比(TSR)为0.12时,获得的最大功率系数为0.21。考虑了制造过程,操作以及将其拆卸的生命周期分析,并将其拆卸为回收或重复使用。结果表明,H-Darrieus涡轮机的制造是针对环境和社区的可持续解决方案。这项研究显示了低规模风力涡轮机的设计,材料和环境影响计算中的创新结果。
摘要:智能纺织品因其在简化生活方面的潜在应用而引起了广泛关注。最近,通过将电子元件整合到导电金属纱线上/内来生产智能纺织品。表面贴装电子设备 (SMD) 集成电子纱线的开发、特性和机电测试仍然有限。由于非细丝导电纱线具有突出的纤维,因此容易发生短路。确定最佳构造方法并研究影响基纱纺织性能的因素非常重要。本文研究了不同外部因素(即应变、焊盘尺寸、温度、磨损和洗涤)对 SMD 集成镀银 Vectran (SCV) 纱线电阻的影响。为此,通过应用气相回流焊接方法将 SMD 电阻器集成到 SCV 纱线中来制造 Vectran 电子纱线。结果表明,导电线规长度、应变、重叠焊盘尺寸、温度、磨损和洗涤对 SCV 电子纱的电阻性能有显著影响。此外,根据实验,由 SCV 导电线和 68 Ω SMD 电阻制成的电子纱的最大电阻和功率为每 0.31 m 长度 72.16 Ω 和 0.29 W。因此,这种电子纱的结构也有望为制造可穿戴导电轨道和传感器带来巨大好处。
融合细丝制造(FFF)或融合沉积建模(FDM)是多种领域中广泛使用的增材制造技术。然而,空隙,层之间的粘结差,而FDM Pa-Rameter通常会影响FDM打印的物体,从而改变其强度。研究人员已经研究了用于FDM打印的碳纳米管(CNT)复合材料,以提高其特征。本文提出了一个用于预测机械性能的CIENT三级计算模型,以及用于制备CNT融合的昀碗哀叹的独特淬火过程。通过广泛的参数分析揭示了FDM过程参数在机械性能上的ince。与纯ABS相比,注入CNT的复合材料表现出更好的键合和模量。实验研究表明,对于ABS和ABS-CNT而言,层高度的增加分别使弹性模量分别恶化了21.03%和27.92%。在pure ABS中,In ll密度分别从100%增加到75%和50%,将模量增加49.3%和69.6%。分别在0 - 0 0和0 - 90 0方向上打印的零件,分别为纯ABS和纳米复合材料发现了2.11%和1.7%的降低。计算结果与实验性昀碗nding非常吻合,在0.1 mm和0.2 mm的层高度的差异从10.15%到5.5%不等。对于其他参数(例如栅格方向),0 - 0 0和0 - 90 0的差分别为5.3%和6.9%。计算结果与实验结果一致,使其成为优化FDM打印和利用CNT以提高零件性能的有用工具。
主办机构NOVA科学学校和技术-LAQV-REQUIMTE研究小组和URL BIO(化学)过程工程-https://laqv.requimte.pt/research/research/research-groups/106-bio_cheme_chemical_chemical_chemical_chemical_process_engineering supportor(name and e-mail)主管Ana Almeida是一名研究人员,由Biologia Instituto de Biologia实验性ETecnológica(IBET)从07/2022起在NOVA科学技术学院(FCT -Nova)工作的Searcularmine欧洲项目(FCT -NOVA)工作,并负责为孟买孟布拉纳群岛先进的实验室负责。Cenimat | i3n合作者的正式成员Laqv@Requimte,2个成本动作的成员(Eutopia - CA17139和Phobios - CA21159),以及DynacellCollect Project的首席研究员(2022.01619.PTDC),由FCT与250K e fcct and 2500k一起资助。她在加工和开发新材料的领域参与了13个国家和国际科学项目。,她获得了Nova(Lisboa大学)的“响应式和功能材料的纤维素丝和功能材料”的材料科学与工程博士学位(10/2021)。开发的研究工作的重点是隔离和表征从植物中提取的纤维素细丝和细丝网络。在2009年完成了生物技术学硕士学位,并在2007年完成了应用化学NOVA的BSC。她从09/2008到09/2011在ITQB/IBET工作。2012年,她开始在Cenimat工作,直到06-2022。从07/2022开始获得博士学位后,她一直在LAQV@Requimte的初级研究员(化学)工艺工程 - 膜过程组工作。她已经出版了1本书分会(Elsevier);如果期刊(即PNAS,高级材料)(在前封面上突出显示),则有15份同行评审的论文(过去5年中的8篇论文,1个作为通讯作者)。参加了多次科学会议,有14个口头(5个被邀请)和21个海报演示。她从事外展活动,例如欧洲研究员的2017年之夜(示威者)和2022年(负责调查员),EncontroCiência'20(示威者),展览 @国家自然历史和科学博物馆 - 里斯本(组织成员)和液晶艺术展览会(组织成员)和Nova图书馆(组织成员)。她是欧洲项目的GA会议(2013年)和里斯本举行的第28届国际液晶会议的组织委员会成员,负责该计划(2018-2022)。她是SPCL(Sociedade Portuguesa de CristaisLíquidos)的创始成员和董事会成员,也是国际液晶学会的成员。她监督了2个BSC和5个MSC论文,并有6个正在进行的监督(2个BSC和4 MSC),并在FCT-Nova(例如聚合物物理学和化学)的理论和实践课程中演讲。她是3个学术陪审团的成员,2个作为主管,1个作为主要对手。她是第7期审查员的科学委员会的一部分,并作为客座编辑的1个。在2017年获得了谦虚的社会(IT)的适度会议赠款; 2019年《液晶杂志》编辑委员会(英国)的Luckhurst-Samulki奖; 2019年最高的论文在2018 - 2019年期间发表于I3N和2020年的会议赠款,该论文(美国)(美国)(美国)。https://iorcid.org/0000-0003-4984-0759https://iorcid.org/0000-0003-4984-0759
摘要:人们对 3D 打印在传感器制造中的应用越来越感兴趣。使用 3D 打印技术为制造几何和功能复杂的传感器提供了一种新方法。这项工作介绍了对 3D 打印热塑性纳米复合材料在施加力下的压缩的分析。获得了相应电阻变化与施加负载的响应,以评估打印层作为压力/力传感器的有效性。聚乳酸 (PLA) 基质中的多壁碳纳米管 (MWNT) 和高结构炭黑 (Ketjenblack) (KB) 被挤出以开发可 3D 打印的细丝。研究了创建的 3D 打印层的电和压阻行为。MWNT 和 KB 3D 打印层的渗透阈值分别为 1 wt.% 和 4 wt.%。厚度为 1 mm 的 PLA/1 wt.% MWNT 3D 打印层表现出负压系数 (NPC),其特征是,当压缩载荷增加至 18 N 且最大应变高达约 16% 时,电阻会下降约一个数量级。在力速率为 1 N/min 的循环模式下,PLA/1 wt.% MWNT 3D 打印层表现出良好的性能,压阻系数或应变系数 (G) 为 7.6,压阻响应幅度 (A r) 约为 -0.8。KB 复合材料在循环模式下无法显示稳定的压阻响应。然而,在高力率压缩下,PLA/4 wt.% KB 3D 打印层导致大灵敏度的响应(Ar=-0.90)并且在第一个循环中不受噪声影响,具有 G = 47.6 的高值,这是一种高效的压阻行为。
yarrowia lipolytica是异源蛋白质产生的替代酵母。Based on auto-cloning vectors, a set of 18 chromogenic cloning v ectors w as dev eloped, each containing one of the excisa b le auxotr ophic selecti v e markers URA3 e x, LYS5 e x, and LEU2 e x, and one of six different promoters: the constitutive pTEF, the phase dependent hybrid pHp4d, and the来自PEYK1和PEYL1 deri v ati v es的红氨酸诱导启动子。这些V eTor允许提高感兴趣基因的克隆速度。同时,通过废除细丝并引入了赖氨酸(LYS-)的合理性,开发了一种新的RPROT受体菌株JMY8647,这是基因工程的附加标记。使用此克隆str at gy,这是根茎的最佳靶向序列,如确定。与用野生型ROL信号序列相比,在八个靶向序列中,SP6信号序列在脂肪酶活性中提高了23%。使用杂种Ythritol-inducib le pr opters phu8eyk和peyl1-5ab(1.9和2.2次)与constituti v e ptef pr emoter进行比较时,使用YTHRITOL-Inducib le premoters phu8eyk和Peyl1-5ab(Peyl1-5ab)进行。 两次拷贝str ains在PTEF单子镜菌株上产生3.3倍的脂肪酶活性(266.7对79.7 mu/mg)。。两次拷贝str ains在PTEF单子镜菌株上产生3.3倍的脂肪酶活性(266.7对79.7 mu/mg)。
单元I - 骨骼肌和骨骼肌的宏观和微结构,化学成分。肌肉收缩的滑动细丝理论。肌肉纤维的类型。肌肉张力,肌肉收缩的化学性质 - 肌肉中的热量产生,锻炼的作用和对肌肉系统的训练。II单元 - 心血管系统和运动心脏瓣膜和血液流动的方向 - 心脏的传导系统 - 心脏的血液供应 - 心脏周期 - 中风量 - 心脏输出 - 心脏输出 - 心率 - 影响心率的因素 - 心脏肥大 - 心脏肥大 - 运动和对心脏血管系统的训练和训练。UNIT III – Respiratory System and Exercise Mechanics of Breathing – Respiratory Muscles, Minute Ventilation – Ventilation at Rest and During Exercise.Diffusion of Gases – Exchange of Gases in the Lungs –Exchange of Gases in the Tissues – Control of Ventilation – Ventilation and the Anaerobic Threshold.Oxygen Debt – Lung Volumes and Capacities – Effect of exercises and training on the respiratory system.第四单元 - 代谢和能量转移代谢 - ATP - PC或磷脂系统 - 厌氧代谢 - 有氧代谢 - 有氧和厌氧系统在休息和运动过程中。短持续时间高强度练习 - 高强度练习持续了几分钟 - 长时间练习。单位V - 气候条件和运动表现以及湿度的辅助性辅助 - 温度调节 - 炎热气候下的运动表现,凉爽的气候,高海拔。的影响:苯丙胺,合成代谢类固醇,雄激素,β受体阻滞剂,胆碱,肌酸,人类生长激素对运动表现。麻醉剂,刺激剂:苯丙胺,咖啡因,麻黄碱,交感神经胺。兴奋剂和运动表现。
我们的所有(认知)行为都要求在大脑的空间分离区域之间交换和整合神经信息。大脑区域之间神经信息的交流是由大脑连接解剖结构的复杂结构促进和构成的,大脑的连接解剖结构涵盖了大约860亿个神经元,该神经元组织成由远程轴突途径相互联系的局部CIT网络。神经科学家长期以来一直渴望映射此网络。在1665年,丹麦主教和anto mist niels Stensen(Nicolaus Steno)认为,我们需要“真正地剖析白质(他称为“自然的伟大杰作”),我们需要“我们需要“通过大脑的实质来追踪神经细丝,以查看它们通过的方式,以及它们的何处,以及它们的结局,它们结束了” [1] [1] [1] [1] [1] [1] [1]。,曾经,直到1986年,对神经系统中所有连接的第一个完整描述才完成。这个神经网络的1毫米round虫Caenorhabditis秀丽隐杆线虫含有302个神经元和约7,000个连接是迄今为止成人生物体的唯一完整连接。近年来,还完成了突触级连接组的幼虫,海洋喷出ciona intestinalis,海洋Annalid platynereis dumerilii的幼虫和果蝇果蝇,果蝇Melanogaster的幼虫[2]。映射人脑网络的愿望是受到对其结构的描述和分析的观念的启发,可以帮助我们了解大脑及其疾病的工作[3],遵循“结构驱动行为”的想法。这对大脑来说是类似的。从细胞层面上是正确的,其中蛋白质组(由基因组,细胞或生物体表达的整个蛋白质集)将细胞行为[4]驱动到社会水平,而办公室布局决定了我们在工作中与谁成为朋友。尽管人脑的巨大规模和复杂性阻止了当前和可预见的将来的突触水平的人脑网络的重建,但神经影像学的进步确实允许越来越多地