近年来,使用生物分子具有机器人功能的工程动态和自主系统越来越感兴趣。具体而言,分子电动机将化学能量转化为机械力和DNA的可编程性的能力被认为是这些系统的有希望的组成部分。但是,当前系统依赖于手动添加外部刺激,从而限制了自主分子系统的潜力。在这里,我们表明,基于DNA的级联反应可以充当分子控制器,该反应驱动驱动蛋白推动的DNA-功能化微管的自主组装和拆卸。DNA控制器旨在产生两个不同的DNA链,以编程微构造之间的相互作用。与控制器集成的滑行微管自动组装以束样结构,并将其分解成无外部刺激的离散细丝,这是通过荧光显微镜观察到的。我们认为,这种方法是具有机器人功能的基于运动蛋白的多组分系统的更自主行为的起点。
近年来,使用生物分子具有机器人功能的工程动态和自主系统越来越感兴趣。具体而言,分子电动机将化学能量转化为机械力和DNA的可编程性的能力被认为是这些系统的有希望的组成部分。但是,当前系统依赖于手动添加外部刺激,从而限制了自主分子系统的潜力。在这里,我们表明,基于DNA的级联反应可以充当分子控制器,该反应驱动驱动蛋白推动的DNA-功能化微管的自主组装和拆卸。DNA控制器旨在产生两个不同的DNA链,以编程微构造之间的相互作用。与控制器集成的滑行微管自动组装以束样结构,并将其分解成无外部刺激的离散细丝,这是通过荧光显微镜观察到的。我们认为,这种方法是具有机器人功能的基于运动蛋白的多组分系统的更自主行为的起点。
通过湿上载或精确的层压板外部粘结CFRP复合材料在现有RC柱表面上提供了补充的强度和刚度。CFRP限制了内部混凝土芯并增强其压缩能力。它还提供额外的剪切电阻。此外,即使在混凝土粉碎后,加固仍会继续起作用。许多先前的研究已经在实验上证明,CFRP包裹可显着增加轴向,弯曲和地震载荷下RC柱的承载能力。然而,优化参数,例如CFRP刚度,厚度,方向和布局对于最大化增强效率至关重要。已经采用了各种技术来使用FRP复合材料来限制列。最常见的方法是原位FRP包装,其中单向光纤板或编织的织物板上浸入聚合物树脂中,并在湿的上衬里过程中包裹在圆柱上,主纤维在箍方向上定向。此外,还使用了细丝绕组和预制的FRP夹克。
看来,纳米级的第一批琴弦是由法国奥尔良大学的Marinobu Endo于1970年编写的。这些细丝的直径为7纳米,并通过蒸汽生长法制备。今天,Tsukuba的NEC实验室的IJIMA名称是1991年成功观察HR-TEM纳米管的第一个人,仍然是该领域的研究人员的首位。同时,旋转电子的自旋可以有两个方向。到目前为止,物理学家认为电子的四个可能状态彼此相等。这四个状态是从两个旋转状态的组合(在向上和向下的方向上)和两个状态获得电子旋转方向。同时,在莫斯科独立地,科学家成功地发现了微管,其长度与直径的比率低于Ijima的发现。俄罗斯人将这种物质命名为Barrelense。Ijima设法观察到的是一种多层纳米管,两年后,他成功地观察了单层纳米管。在1996年,赖斯的小组成功地制作了单层纳米管的并行堆栈,这为进一步研究一维量子物理学开辟了道路。
在太空环境中,温度波动、冷焊和其他环境因素给设计师带来了新的挑战。立方体卫星在低地球轨道上经历的平均温度范围在日食侧为 -65°C,在太阳侧为 +125°C,因此需要一种能够承受周期性温度波动同时保持其机械性能的材料 [4]。此外,当两个金属表面相互接触时,冷焊是一个值得关注的问题。当两个金属表面之间的间隙变得足够小以至于两个表面的原子共享价电子并相互结合时,就会发生冷焊。这种现象在立方体卫星-分配器界面中令人担忧,两个光滑表面在部署过程中会相互滑动。为了避免这种情况,立方体卫星轨道可以使用聚合物或其他非金属材料。市售尼龙碳纤维 PolyMide PA6-CF 复合材料在上述两种情况下均能发挥理想作用(表 2)。由于在 180°C 下变形最小且无法冷焊,这种 FDM 细丝是模块化 CubeSat 结构的主要候选材料。
1。P. Baumann,F。E. Benson,S。C. West,Human Rad51蛋白在体外促进ATP依赖性同源配对和链转移反应。Cell 87,757-766(1996)。 2。 F. E. Benson,A。Stasiak,S。C。West,人类Rad51蛋白的纯化和表征,大肠杆菌的类似物。 EMBO J 13,5764-5771(1994)。 3。 y。 Sun,T。J. McCorvie,L。A. Yates,X。Zhang,同源重组的结构基础。 单元格。 mol。 生命科学。 77,3-18(2020)。 4。 D. K. Bishop,RecA同源物DMC1和RAD51相互作用,在减数分裂染色体突触之前形成多个核复合物。 Cell 79,1081-1092(1994)。 5。 A. Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。 Semin Cell Dev Biol 113,3-13(2020)。 6。 Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。 细胞周期17,2101-2109(2018)。 7。 A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。Cell 87,757-766(1996)。2。F. E. Benson,A。Stasiak,S。C。West,人类Rad51蛋白的纯化和表征,大肠杆菌的类似物。EMBO J 13,5764-5771(1994)。3。y。Sun,T。J. McCorvie,L。A. Yates,X。Zhang,同源重组的结构基础。单元格。mol。生命科学。77,3-18(2020)。 4。 D. K. Bishop,RecA同源物DMC1和RAD51相互作用,在减数分裂染色体突触之前形成多个核复合物。 Cell 79,1081-1092(1994)。 5。 A. Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。 Semin Cell Dev Biol 113,3-13(2020)。 6。 Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。 细胞周期17,2101-2109(2018)。 7。 A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。77,3-18(2020)。4。D. K. Bishop,RecA同源物DMC1和RAD51相互作用,在减数分裂染色体突触之前形成多个核复合物。Cell 79,1081-1092(1994)。 5。 A. Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。 Semin Cell Dev Biol 113,3-13(2020)。 6。 Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。 细胞周期17,2101-2109(2018)。 7。 A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。Cell 79,1081-1092(1994)。5。A.Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。Semin Cell Dev Biol 113,3-13(2020)。6。Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。细胞周期17,2101-2109(2018)。7。A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。单元格170,760-773.E715(2017)。8。K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。癌细胞22,106-116(2012)。9。S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。Semin Cell Dev Biol 113,14-26(2021)。10。H. L. Klein,Rad51过表达对正常和肿瘤细胞的后果。DNA修复(AMST)7,686-693(2008)。11。R。B. Jensen,A。Carreira,S。C. Kowalczykowski,纯化的人BRCA2刺激了Rad51介导的重组。自然467,678-683(2010)。12。L. A. Greenhough等。,RAD51B – RAD51C – RAD51D -XRCC2肿瘤抑制剂的结构和功能。自然619,650-657(2023)。13。Y. Rawal等。,在同源重组中对BCDX2复杂功能的结构见解。自然619,640-649(2023)。14。E. Antony等。 ,SRS2通过蛋白质 - 蛋白质相互作用触发ATP周转和RAD51与DNA解离的蛋白质蛋白质相互作用来解散RAD51丝。 mol Cell 35,105-115(2009)。 15。 J. Simandlova等。 ,FBH1解旋酶在体外破坏RAD51丝,并调节哺乳动物细胞中的同源重组*。 生物学杂志288,34168-34180(2013)。 16。 J. D. Ward等。 ,重叠的机制促进了减数分裂双链破裂修复期间突触后RAD-51细丝拆卸。 mol细胞37,259-272(2010)。 17。 M. Ito等。 ,Fignl1 AAA+ ATPase重塑了舒适性DNA复制和减数分裂重组中的RAD51和DMC1丝。 nat。 社区。 14,6857(2023)。 18。 J. Yuan,J。Chen,有效的同源重组修复需要含Fignl1的蛋白质复合物。 proc。E. Antony等。,SRS2通过蛋白质 - 蛋白质相互作用触发ATP周转和RAD51与DNA解离的蛋白质蛋白质相互作用来解散RAD51丝。mol Cell 35,105-115(2009)。15。J. Simandlova等。,FBH1解旋酶在体外破坏RAD51丝,并调节哺乳动物细胞中的同源重组*。生物学杂志288,34168-34180(2013)。16。J. D. Ward等。 ,重叠的机制促进了减数分裂双链破裂修复期间突触后RAD-51细丝拆卸。 mol细胞37,259-272(2010)。 17。 M. Ito等。 ,Fignl1 AAA+ ATPase重塑了舒适性DNA复制和减数分裂重组中的RAD51和DMC1丝。 nat。 社区。 14,6857(2023)。 18。 J. Yuan,J。Chen,有效的同源重组修复需要含Fignl1的蛋白质复合物。 proc。J. D. Ward等。,重叠的机制促进了减数分裂双链破裂修复期间突触后RAD-51细丝拆卸。mol细胞37,259-272(2010)。17。M. Ito等。,Fignl1 AAA+ ATPase重塑了舒适性DNA复制和减数分裂重组中的RAD51和DMC1丝。nat。社区。14,6857(2023)。18。J. Yuan,J。Chen,有效的同源重组修复需要含Fignl1的蛋白质复合物。proc。natl。学院。SCI。 110,10640-10645(2013)。 19。 Q. Zhang等。 ,flip-fignl1复合物调节在同源重组和复制叉重新启动中RAD51/DMC1的解离。 核酸Res 43,GKAD596(2023)。SCI。110,10640-10645(2013)。19。Q. Zhang等。 ,flip-fignl1复合物调节在同源重组和复制叉重新启动中RAD51/DMC1的解离。 核酸Res 43,GKAD596(2023)。Q. Zhang等。,flip-fignl1复合物调节在同源重组和复制叉重新启动中RAD51/DMC1的解离。核酸Res 43,GKAD596(2023)。
添加剂制造(通常称为3D打印)由使用数字计算机辅助设计(CAD)的各种制造工艺编译,并通过将连续的,分层的跨层应用于构建平台,并将其处理为3D物理对象。It possesses signi cant bene ts over its more traditional formative and subtractive manufacturing counterparts, such as: on-demand manufacturing, lower (o en zero) waste, rapid prototyping capabilities, high degree of customisability, global reach as les can be modi ed and sent anywhere in the world, and the ability to create complex geometries such as nested and moving structures or overhangs.1融合细丝制造(FFF)是一种添加剂制造,由于FFF打印机的相对较低的成本及其使用的简单性,因此广泛采用了。2它涉及挤出毫米尺度的热塑性聚合物通过加热喷嘴哀叹。打印头的运动将聚合物的薄横截面绘制到上一个,并在此冷却并固体以使nal 3d对象。广泛的商业哀叹
细丝缠绕复合压力容器(CPV)主要用于气体或流体储存。复合容器受到严格的条件,例如临界载荷,极端温度和爆发;因此,对于船舶结构完整性的永久性原位和在线监测方法至关重要。因此,本评论的论文重点介绍了最流行的传感器(例如Piezoeelectric(PZT和PVDF),Piezoresistive(BP和MXENE)以及光纤(SOFO®,OBR和FBG)传感器,以开发出一种结构性健康监测(SHM)来创建自我增压压力容器。本评论论文的新颖性在于提供概述现有作品的概述,涵盖了复合容器中传感器的整合,包括传感器类型,本地化及其对复合完整性的影响。尤其是对传感器集成,尤其是其受监控参数,布局设计和CPV中的布置的分析。此外,分析了宿主复合材料和传感器之间的相互作用,以了解如何将传感器与改变复合容器机械性能的最小缺陷整合。最后,对CPV的SHM系统进行了讨论,为研究人员提供了即将进行的实验工作的基础。
癌症仍然是全球面临的健康挑战,因此需要开发创新的治疗策略。在众多治疗方法中,微管靶向剂 (MTA) 已成为癌症治疗的突出候选药物。1 – 4 微管是细胞骨架的组成部分。它们是动态细丝,在各种细胞过程中发挥着关键作用,包括细胞分裂、细胞内运输以及细胞形状和结构的维持。5 – 7 微管在这些重要细胞功能中发挥着至关重要的作用,使其成为抗癌干预的有吸引力的靶点。MTA 被认为是治疗多种癌症(包括肺癌、乳腺癌、卵巢癌和前列腺癌)的极具前景的药物。8 通过破坏微管的正常功能,MTA 已证明其在阻止细胞周期进程和诱导程序性细胞死亡方面的有效性。 9,10 根据作用机制,这些药物可分为三大类:微管稳定剂 (MSA)、微管不稳定剂 (MDA) 和微管靶向降解剂 (MTG)。MSA,例如紫杉烷和劳利马利德/佩洛鲁西德-A,可促进微管聚合和稳定。相反,MDA,例如长春花
石墨烯纤维已成为具有出色集成特性的有前途的碳纤维。以前的实验室研究集中在原型单纤维上,但是石墨烯纤维丝的可扩展制造仍然几乎没有探索。在这里,我们报告了具有高强度和优质导热率的石墨烯纤维丝的大规模工业制造。在可扩展的湿旋转过程中,我们引入了逐步的溶剂插入塑料拉伸,以改善前体石墨烯氧化物纤维丝的均匀性,密度和结构顺序。化学还原和高温石墨化恢复石墨烯原子结构,并实现大型石墨晶体大小的细丝。石墨烯纤维丝显示出有利的总体性能,包括1.4 GPA的拉伸强度,1.93 g/cm 3的密度,4.1×10 5 s/m的电导率和1204 W/mk的导热率。石墨烯纤维丝的制造奠定了其广泛应用的基础,因为纺织品和复合材料和溶剂插入塑料拉伸可能是制造二维材料的高性能纤维丝的一般方法。