获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
对待精神状态的检测在神经反馈过程以及注意力缺陷和多动症(ADHD)中起着至关重要的作用。但是,检测方法的性能仍然不满意。挑战之一是为脑电图(EEG)数据找到适当的表示,该数据可以保留时间信息并保持空间拓扑特征。受到大脑 - 计算机界面(BCI)领域研究中的深度学习(DL)方法的启发,提出了提出了带有级联和平行卷积操作的3D卷积神经网络模型的EEG信号的3D表示。该模型利用了三个级联块,每个级联块由两个平行的3D卷积分支组成,以同时提取多尺度特征。在包含26名受试者的公共数据集上进行了评估,与对象内,受试者间和受试者自适应分类方案相比,所提出的模型的性能更好。这项研究证明了3D CNN模型检测细心状态的有希望的潜力。©2021 Elsevier Ltd.保留所有权利。