摘要 - 经常使用大量的板载传感器和应用程序,以支持自主驾驶功能。基于当前的研究,几乎没有对应用程序访问车辆内数据的工作。此外,大多数现有的自动驾驶操作系统都缺乏身份验证和加密单位。因此,申请可以过多地获取一致的信息,例如车辆位置和所有者偏好,甚至将其上传到云中,威胁到车辆的安全性和所有者的隐私。在这项研究中,我们提出了一种细粒度的访问控制方案,以限制应用程序对CAVS(FGAC-INCAVS)中数据的访问。首先,我们提出了一个由以下要素组成的系统模型:受信任的第三方(TTP),这是完全值得信赖的权威;感知组件(例如传感器),可以捕获道路信息(图片,视频等)。);和多个应用程序。然后,提出了一个基于快速属性的加密(ABE),安全分析还表明,它可以防止选择性和选择性攻击。此外,我们提出了一个基于中文剩余定理(CRT)的关键更新方案。最后,理论分析和仿真实验证明了其可行性和效率。
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。
我们描述了 Sketch-and-Stitch 方法,该方法将认知模型和 EEG 结合起来,以重建受试者的认知。该方法在视频游戏的背景下进行了测试,其中动作高度相互依赖且变化多端:只需在 30 分之一秒内改变是否按下某个键就会导致截然不同的结果。Sketch 级别识别游戏中的关键事件,Stitch 级别填充这些事件之间的详细操作。关键事件往往会产生强大的 EEG 信号,认知模型提供关键事件之间各种转换的概率以及这些事件之间的间隔分布。这些信息可以组合成一个隐式半马尔可夫模型,该模型可以识别最可能的关键事件序列及其发生时间。Stitch 级别从广泛的模型游戏库中选择详细操作来生成这些关键事件。从库中选择哪个动作序列的决定取决于它们产生 EEG 信号较弱方面的能力。最终的方法可以通过受试者的脑电图生成相当引人注目的实际比赛重播。
(i) 细粒度 SIMD:这些实际上是处理实际上由大得多的组件组成的小得多的组件的详细描述。 (ii) 粗粒度 SIMD:这些系统由较少的组件组成,这些组件显然比原始组件多,但比细粒度 SIMD 小得多,但组件的大小比系统的细粒度子组件大得多(高/多)。细粒度和粗粒度 SIMD 架构之间的差异:
