照片开关是在光线激发后在异构体之间可逆的分子。自然存在的光异构分子的关键例子是视网膜,它经历了吸收光子的z / e同组化,该光子启动了负责视觉的细胞信号传导级联。1 During the last century, chemists have designed a myriad of arti cial photoswitch structures: azobenzenes, 2 (sti ff -)stilbenes, 3 indi- goids, 4 diarylethenes, 5 norbornadienes/quadricyclanes, 6 spi- ropyrans/merocyanines, 7 and donor – acceptor Stenhouse adducts (DASAs), 8 to name一些(图1a)。同组化时开关变化的理化特性,并引起光反应函数。例如,可以利用Azobenzenes,Stilbenes和Indigoid的E - Z异构体来控制分子系统的超分子相互作用或将菌株诱导到宏观材料中。另一方面,日钟甲烯和螺旋形的电循环分别改变了这些分子的结合和偶极矩。这些现象可以在医学分子或宏观水平上运行的光响应系统中被利用,9个生物科学,10,11催化,12
心力衰竭 (HF) 是一种复杂且多因素的疾病。最近,人们在理解 HF 发病机制所涉及的潜在分子过程方面取得了进展。这些科学进步揭示了分泌蛋白组的重要性。本文全面概述了分泌蛋白组在 HF 的发病、进展以及改善诊断和治疗干预的可能性方面的科学现状。我们探讨了各种类型的分泌因子,包括新型蛋白质、生长因子、细胞因子和微小 RNA。我们还讨论了它们如何影响 HF 中的细胞信号传导、血管生成、纤维化、病理性心脏重塑和炎症。此外,我们还研究了分泌蛋白组在心脏保护和心脏毒性中的作用。本综述强调了分泌蛋白组在生物标志物发现方面的潜力。这可能有助于更好地诊断 HF、进行风险分层、监测和治疗。本综述还讨论了研究分泌因子作用的困难以及分泌蛋白组研究的新方向。它强调了其作为新治疗方法和生物标志物开发目标的潜力。
各种微生物群落居住在人类的胃肠道中,并在免疫,消化,药物代谢,肠道完整性和免受病原体的保护中起着重要作用。最近的研究表明,肠道微生物群(GM)通过称为肠脑轴的双向通信网络与大脑进行了交流。这种沟通涉及体液,免疫,内分泌和神经途径。肠道营养不良对这些交流途径产生负面影响,导致神经系统并发症和认知降低。临床前和临床研究都表明,益生菌可以恢复健康的转基因,减少肠道pH,并减少肠道中的炎症和致病微生物。此外,益生菌改善细胞到细胞信号传导并增加血液源于脑部的神经营养因子。益生菌是预防和管理神经系统并发症和认知降低的潜在方法。尽管有这些有希望的发现,但必须密切监控和解决益生菌使用的安全问题和可能的风险。本评论文章简要概述了益生菌在认知健康中的作用和重要性。
摘要 对于许多多基因或多因素疾病,抑制特定分子靶点的单一药物疗法通常不如联合治疗有效。通常,药物联合疗法是多靶点的,因此其机制甚至相互作用通常是互补的。这些药物相互作用可能促使一种药物的药代动力学或药效学活性被另一种药物改变。其他相互作用可能通过多态性改变药物的预期效果,从而改变药物介导的酶和细胞信号级联的表达或活性,例如药物-基因相互作用和药物-药物-基因相互作用。可能存在的相互作用数量需要适当的研究方法。在这篇综述中,我们总结了癌症以及病毒、心血管和神经系统疾病的联合疗法。在这里,我们还重点介绍了已知的方法,例如基于 Loewe 和 Bliss 的先驱模型的体外方法和基于在线可用数据的计算机模拟方法。随着方法越来越复杂、结果越来越可靠,通过药物组合进行的多靶点治疗可能会越来越多地使患有复杂疾病的患者受益。
摘要:调节性非蛋白编码 RNA 发挥着各种复杂的生物学功能。之前,我们证明了人类非编码库 RNA1-1 (vtRNA1-1) 在抑制几种癌细胞系的内在和外在凋亡方面的作用。然而,在分子水平上,vtRNA1-1 的功能仍不完全清楚。在这里,我们创建了 HeLa 敲除细胞系,结果表明,在没有 vtRNA1-1 的情况下,长期饥饿会引发细胞凋亡水平升高,但在 vtRNA1-3 敲除细胞中则不会。mRNome 的下一代深度测序确定了 PI3K / Akt 通路和 ERK1 / 2 MAPK 级联,这两个重要的信号传导轴,在饥饿介导的细胞死亡条件下,在没有 vtRNA1-1 的情况下会受到错误调节。 vtRNA1-1 突变体的表达表明,vtRNA1-1 中心域的 24 个核苷酸的短片段对于成功维持抗凋亡性至关重要。本研究描述了人类 vtRNA1-1 对饥饿诱导的程序性细胞死亡的细胞信号传导依赖性贡献。
1. 进化及其机制 2. 生物分子的结构和功能、原核和真核细胞结构、细胞周期、细胞信号传导和信号转导 3. 生化原理:pH、缓冲液、生物能学、糖酵解、氧化磷酸化、偶联反应、基团转移、生物能量转换器、酶学、碳水化合物、脂质、氨基酸核苷酸和维生素的代谢。 4. 孟德尔遗传、核酸的结构和功能、原核生物和真核生物的复制、转录、翻译及其调控机制 5. 免疫学:先天、体液和细胞介导免疫;抗原;抗体的结构和功能、免疫学原理的应用、疫苗、诊断学。 6. 应用生物学:重组 DNA 技术:限制和修饰酶;载体;质粒、cDNA和基因组DNA文库、聚合酶链反应、转基因动物和植物、分子诊断和菌株鉴定方法7.生态学及其原理:环境、生态系统生态学保护生物学、污染8.基本技术的原理和应用:显微镜、离心、电泳、色谱法
异三聚体G蛋白在细胞信号传导中起着核心作用,充当可切换的分子调节剂。因此,控制G蛋白活性的药理剂对于促进我们对该信号转导系统的理解至关重要。天然二肽FR900359(FR)和YM-254890(YM)是两个高度特异性且广泛使用的异三聚体GQ/11蛋白的抑制剂。传统上,这些化合物通过防止GTPase和Gα亚基的α-螺旋结构域的分离来抑制GDP解离。在这项工作中,我们确定了与异源三聚体G11结合的FR和YM的高分辨率晶体结构,并用它们来解释它们有效抑制G蛋白信号传导的分子基础。值得注意的是,我们的数据表明,FR和YM也充当Gα和Gβ亚基之间界面的稳定剂,充当稳定整个异质三聚体的“分子粘合剂”。我们的结果揭示了未识别的机械特征,这些特征解释了活细胞中FR和YM如何有效地钝化GQ/11信号传导。
照片开关是在光线激发后在异构体之间可逆的分子。自然存在的光异构分子的关键例子是视网膜,它经历了吸收光子的z / e同组化,该光子启动了负责视觉的细胞信号传导级联。1 During the last century, chemists have designed a myriad of arti cial photoswitch structures: azobenzenes, 2 (sti ff -)stilbenes, 3 indi- goids, 4 diarylethenes, 5 norbornadienes/quadricyclanes, 6 spi- ropyrans/merocyanines, 7 and donor – acceptor Stenhouse adducts (DASAs), 8 to name一些(图1a)。同组化时开关变化的理化特性,并引起光反应函数。例如,可以利用Azobenzenes,Stilbenes和Indigoid的E - Z异构体来控制分子系统的超分子相互作用或将菌株诱导到宏观材料中。另一方面,日钟甲烯和螺旋形的电循环分别改变了这些分子的结合和偶极矩。这些现象可以在医学分子或宏观水平上运行的光响应系统中被利用,9个生物科学,10,11催化,12
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
摘要:心力衰竭的患者通常根据其射血分数将表型组分为表型组。该分层的目的是通过更具针对性的治疗方法来改善疾病管理。基于患者性别的进一步细分是合理的。认识到,在随机对照临床试验中,女性的代表性不足,导致男性和女性之间的临床和分子分化有限。然而,许多观察性研究表明,两性之间的发作,发育和临床过程可能会大不相同。根据新兴的精密医学概念,研究人员应进一步探索导致性别差异引起心力衰竭的机制。的确,尚未阐明性激素对心血管系统和潜在心力衰竭机制的协同或相反作用。性激素,危险因素影响和心血管适应可能与更好地理解两性内在的病理生理机制有关。尽管存在差异,但无论性别和性别如何,整个人群的HF治疗都是相似的。在我们的综述中,我们描述了与荷尔蒙模式相关的心血管功能障碍,危险因素和细胞信号修饰方面的主要差异。